
REEF: Retainable Evaluator Execution Framework

Markus Weimera, Yingda Chena, Byung-Gon Chunc, Tyson Condieb, Carlo Curinoa,
Chris Douglasa, Yunseong Leec, Tony Majestroa, Dahlia Malkhi f , Sergiy Matusevycha,

Brandon Myerse, Shravan Narayanamurthya, Raghu Ramakrishnana, Sriram Raoa,
Russell Searsd, Beysim Sezgina, Julia Wanga

a: Microsoft, b: UCLA, c: Seoul National University, d : Pure Storage, e: University of Washington, f : VMware

ABSTRACT
Resource Managers like Apache YARN have emerged as a criti-
cal layer in the cloud computing system stack, but the developer
abstractions for leasing cluster resources and instantiating applica-
tion logic are very low-level. This flexibility comes at a high cost
in terms of developer effort, as each application must repeatedly
tackle the same challenges (e.g., fault-tolerance, task scheduling
and coordination) and re-implement common mechanisms (e.g.,
caching, bulk-data transfers). This paper presents REEF, a de-
velopment framework that provides a control-plane for schedul-
ing and coordinating task-level (data-plane) work on cluster re-
sources obtained from a Resource Manager. REEF provides mech-
anisms that facilitate resource re-use for data caching, and state
management abstractions that greatly ease the development of elas-
tic data processing work-flows on cloud platforms that support a
Resource Manager service. REEF is being used to develop several
commercial offerings such as the Azure Stream Analytics service.
Furthermore, we demonstrate REEF development of a distributed
shell application, a machine learning algorithm, and a port of the
CORFU [4] system. REEF is also currently an Apache Incubator
project that has attracted contributors from several instititutions.1

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Design, Experimentation, Performance

Keywords
Big Data; Distributed Systems; Database; High Performance Com-
puting; Machine Learning

1. INTRODUCTION
Apache Hadoop has become a key building block in the new

generation of scale-out systems. Early versions of analytic tools

1http://reef.incubator.apache.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2742793.

over Hadoop, such as Hive [44] and Pig [30] for SQL-like queries,
were implemented by translation into MapReduce computations.
This approach has inherent limitations, and the emergence of re-
source managers such as Apache YARN [46], Apache Mesos [15]
and Google Omega [34] have opened the door for newer analytic
tools to bypass the MapReduce layer. This trend is especially sig-
nificant for iterative computations such as graph analytics and ma-
chine learning, for which MapReduce is widely recognized to be a
poor fit. In fact, the website of the machine learning toolkit Apache
Mahout [40] explicitly warns about the slow performance of some
of its algorithms when run on Hadoop MapReduce.

Resource Managers are a first step in re-factoring the early im-
plementations of MapReduce into a common scale-out computa-
tional fabric that can support a variety of analytic tools and pro-
gramming paradigms. These systems expose cluster resources—
in the form of machine slices—to higher-level applications. Ex-
actly how those resources are exposed depends on the chosen Re-
source Manager. Nevertheless, in all cases, higher-level applica-
tions define a single application master that elastically acquires re-
sources and executes computations on them. Resource Managers
provide facilities for staging and bootstrapping these computations,
as well as coarse-grained process monitoring. However, runtime
management—such as runtime status and progress, and dynamic
parameters—is left to the application programmer to implement.

This paper presents the Retainable Evaluator Execution Frame-
work (REEF), which provides runtime management support for
task monitoring and restart, data movement and communications,
and distributed state management. REEF is devoid of a specific
programming model (e.g., MapReduce), and instead provides an
application framework on which new analytic toolkits can be rapidly
developed and executed in a resource managed cluster. The toolkit
author encodes their logic in a Job Driver—a centralized work
scheduler—and a set of Task computations that perform the work.
The core of REEF facilitates the acquisition of resources in the
form of Evaluator runtimes, the execution of Task instances on
Evaluators, and the communication between the Driver and its
Tasks. However, additional power of REEF resides in its ability
to facilitate the development of reusable data management services
that greatly ease the burden of authoring the Driver and Task com-
ponents in a large-scale data processing application.

REEF is, to the best of our knowledge, the first framework that
provides a re-usable control-plane that enables systematic reuse
of resources and retention of state across arbitrary tasks, possibly
from different types of computations. This common optimization
yields significant performance improvements by reducing I/O, and
enables resource and state sharing across different frameworks or
computation stages. Important use cases include pipelining data
between different operators in a relational pipeline and retaining



state across iterations in iterative or recursive distributed programs.
REEF is an (open source) Apache Incubator project to increase
contributions of artifacts that will greatly reduce the development
effort in building analytical toolkits on Resource Managers.

The remainder of this paper is organized as follows. Section 2
provides background on Resource Manager architectures. Section 3
gives a general overview of the REEF abstractions and key design
decisions. Section 4 describes some of the applications developed
using REEF, one being the Azure Stream Analytics Service offered
commercially in the Azure Cloud. Section 5 analyzes REEF’s run-
time performance and showcases its benefits for advanced applica-
tions. Section 6 investigates the relationship of REEF with related
systems, and Section 7 concludes the paper with future directions.

2. RISE OF THE RESOURCE MANAGERS
The first generation of Hadoop systems divided each machine in

a cluster into a fixed number of slots for hosting map and reduce
tasks. Higher-level abstractions such as SQL queries or ML algo-
rithms are handled by translating them into MapReduce programs.
Two main problems arise in this design. First, Hadoop clusters of-
ten exhibited extremely poor utilization (on the order of 5− 10%
CPU utilization at Yahoo! [17]) due to resource allocations being
too coarse-grained.2 Second, the MapReduce programming model
is not an ideal fit for some applications, and a common workaround
on Hadoop clusters is to schedule a “map-only” job that internally
instantiates a distributed program for running the desired algorithm
(e.g., machine learning, graph-based analytics) [38, 1, 2].

These issues motivated the design of a second generation Hadoop
system, which includes an explicit resource management layer called
YARN.3 Additional examples of resource managers include Google
Omega [34] and Apache Mesos [15]. While structurally different,
the common goal is to directly lease cluster resources to higher-
level computations, or jobs. REEF is designed to be agnostic to
the particular choice of resource manager, while providing sup-
port for obtaining resources and orchestrating them on behalf of
a higher-level computation. In this sense, REEF provides a logi-
cal/physical separation between applications and the resource man-
agement layer. For the sake of exposition, we focus on obtaining
resources from YARN in this paper.4

Figure 1 shows a high-level view of the YARN architecture, and
Figure 2 contains a table of components that we describe here.
A typical YARN setup would include a single Resource Manager
(RM) and several Node Manager (NM) installations; each NM typ-
ically manages the resources of a single machine, and periodically
reports to the RM, which collects all NM reports and formulates a
global view of the cluster resources. The periodic NM reports also
provides a basis for monitoring the overall cluster health at the RM,
which notifies relevant applications when failures occur.

A YARN job is represented by an Application Master (AM),
which is responsible for orchestrating the job’s work on allocated
containers i.e., a slice of machine resources (some amount of CPU,
RAM, disk, etc.). A client submits an AM package—that includes
a shell command and any files (i.e., binary executables, configu-
rations) needed to execute the command—to the RM, which then
selects a single NM to host the AM. The chosen NM creates a shell
environment that includes the file resources, and then executes the

2Hadoop MapReduce tasks are often either CPU or I/O bound, and
slots represent a fixed ratio of CPU and memory resources.
3YARN: Yet Another Resource Negotiator
4Comparing the merits of different resource management layers is
out of scope for this paper. REEF is primarily relevant to what hap-
pens with allocated resource, and not how resources are requested.

Client

Client

Node
Manager

Container Container

Resource
Manager

Node
Manager

App Mstr Container

Node
Manager

App Mstr Container

Job
Submission

Node Status: Task Status: Resource Request:

Figure 1: Example YARN Architecture showing two clients sub-
mitting jobs to the Resource Manager (RM), which launches two
client Application Master (AM) instances on two Node Managers
(NM). Each AM requests containers from the RM, which allocates
the containers based on available resources reported from its NMs.
If supported by the application, tasks running on containers report
status to the respective AM.

Component (abbr.) Description

Resource Manager (RM) A service that leases cluster re-
sources to applications.

Node Manager (NM) Manages the resources of a single
compute entity (e.g., machine). Re-
ports the status of managed ma-
chine resources to the RM

Application Master (AM) Implements the application control-
flow and resource allocation logic.

Container A single unit of resource al-
location e.g., some amount of
CPU/RAM/Disk.

Figure 2: Glossary of components (and abbreviations) described in
this section, and used throughout the paper.

given shell command. The NM monitors the AM for resource us-
age and exit status, which the NM includes in its periodic reports
to the RM. At runtime, the AM uses an RPC interface to request
containers from the RM, and to ask the NMs that host its contain-
ers to launch a desired program. Returning to Figure 1, we see two
AM instances running, each with allocated containers executing a
job-specific task.

2.1 Example: Distributed Shell on YARN
To further set the stage, we briefly explain how to write an ap-

plication directly on YARN i.e., without REEF. The YARN source
code contains a simple example implementation of a distributed
shell (DS) application. Within that example is code for submit-
ting an AM package to the RM, which proceeds to launch a dis-
tributed shell AM. After starting, the AM establishes a periodic
heartbeat channel with the RM using a YARN provided client li-
brary. The AM uses this channel to submit requests for contain-
ers in the form of resource specifications: such as container count
and location (rack/machine address), and hardware requirements
(amount of memory/disk/cpu). For each allocated container, the
AM sets up a launch context—i.e., file resources required by the
executable (e.g., shell script), the environment to be setup for the
executable, and a command-line to execute—and submits this in-



formation to the NM hosting the container using a YARN provided
client library. The AM can obtain the process-level status of its
containers from the RM or more directly with the host NM, again
using a YARN provided client library. Once the job completes (i.e.,
all containers complete/exit), the AM sends a completion message
to the RM, and exits itself.

The YARN distribution includes this distributed shell program
as an exercise for interacting with its protocols. It is around 1300
lines of code. A more complete distributed shell application might
include the following features:

• Provide the result of the shell command to the client.
• More detailed error information at the AM and client.
• Reports of execution progress at the AM and client.

Supporting this minimal feature set requires a runtime at each NM
that executes the given shell command, monitors the progress, and
sends the result (output or error) to the AM, which aggregates all
results and sends the final output to the client. REEF is our attempt
to capture such control-flow code, that we believe will be common
to many YARN applications, in a general framework. In Section 4.1
we will describe a more feature complete version of this example
developed on REEF in about half (530) the lines of code.

3. REEF
Resource managed applications leverage leased resources to ex-

ecute massively distributed computations; here, we focus on data
analytics jobs that instantiate compute tasks, which process data
partitions in parallel. We surveyed the literature [53, 16, 8, 5, 11,
52] for common mechanisms and design patterns, leading to the
following common components within these architectures.

• A centralized per-job scheduler that observes the runtime
state and assigns tasks to resources e.g., MapReduce task
slots [11].
• A runtime for executing compute tasks and retaining state in

an organized fashion i.e., contexts that group related object
state.
• Communication channels for monitoring status and sending

control messages.
• Configuration management for passing parameters and bind-

ing application interfaces to runtime implementations.

REEF captures these commonalities in a framework that allows
application-level logic to provide appropriate implementations of
higher-level semantics e.g., deciding which resources should be re-
quested, what state should be retained within each resource, and
what task-level computations should be scheduled on resources.
The REEF framework is defined by the following key abstractions.

• Driver: application code that implements the resource allo-
cation and Task scheduling logic.
• Evaluator: a runtime environment on a container that can

retain state within Contexts and execute Tasks (one at a
time).
• Context: a state management environment within an Evalu-

ator, that is accessible to any Task hosted on that Evaluator.
• Task: the work to be executed in an Evaluator.

Figure 3 further describes REEF in terms of its runtime infras-
tructure and application framework. The figure shows an applica-
tion Driver with a set of allocated Evaluators, some of which are
executing application Task instances. The Driver Runtime man-
ages events that inform the Driver of the current runtime state.

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Environment Adapter

Services

Driver Runtime

Driver ContextContextContext

Environment Adapter

ServicesContext
Evaluator

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Task

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Task

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Task

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Task

ContextContextContext

Environment Adapter

ServicesContext
Evaluator

Task

Figure 3: An instance of REEF in terms of its application frame-
work (Driver and Task) and runtime infrastructure components
(Evaluator, Driver Runtime, Environment Adapter).

Each Evaluator is equipped with a Context for capturing appli-
cation state (that can live across Task executions) and Services

that provide library solutions to general problems e.g., state check-
pointing, group communication among a set of participating Task

instances. An Environment Adapter insulates the REEF runtime
from the underlying Resource Manager layer.5 Lastly, REEF pro-
vides messaging channels between the Driver and Task instances—
supported by a highly optimized event management toolkit (Sec-
tion 3.1.2)—for communicating runtime status and state, and a con-
figuration management tool (Section 3.1.3) for binding application
logic and runtime parameters. The remainder of this section pro-
vides further details on the runtime infrastructure components (Sec-
tion 3.1) and on the application framework (Section 3.2).

3.1 Runtime Infrastructure
The Driver Runtime hosts the application control-flow logic im-

plemented in the Driver module, which is based on a set of asyn-
chronous event-handlers that react to runtime events e.g., resource
allocations, task executions and failures. The Evaluator executes
application tasks implemented in the Task module, and manages
application state in the form of Contexts. The Environment Adapter

deals with the specifics of the utilized resource management ser-
vice. Lastly, Services add extensibility to the REEF framework
by allowing isolated mechanisms to be developed and incorporated
into an application’s logic. This section further describes these run-
time infrastructure components.

3.1.1 Environment Adapter
REEF is organized in a way that factors out many of the envi-

ronment specific details into an Environment Adapter layer (see
Figure 3), making the code base easy to port to different resource
managers. The primary role of the Environment Adapter is to
translate Driver actions (e.g., requests for resources) to the under-
lying resource manager protocol. We have implemented three such
adapters:

1. Local Processes: This adapter leverages the host operating
system to provide process isolation between the Driver and
Evaluators. The adapter limits the number of processes ac-
tive at a given time and the resources dedicated to a given
process. This environment is useful for debugging applica-

5REEF is able to expose Resource Manager specific interfaces
(e.g., for requesting resources) to application Driver modules.



tions and examining the resource management aspects of a
given application or service on a single node.

2. Apache YARN: This adapter executes the Driver Runtime

as a YARN Application Master [46]. Resource requests are
translated into the appropriate YARN protocol, and YARN
containers are used to host Evaluators.

3. Apache Mesos: This adapter executes the Driver Runtime

as a “framework” in Apache Mesos [15]. Resource requests
are translated into the appropriate Mesos protocol, and Mesos
executors are used to host Evaluators.

Creating an Environment Adapter involves implementing a cou-
ple of interfaces. In practice, most Environment Adapters require
additional configuration parameters from the application (e.g. cre-
dentials). Furthermore, Environment Adapters expose the under-
lying Resource Manager interfaces, which differ in the way that
resources are requested and monitored. REEF provides a generic
abstraction to these low-level interfaces, but also allows applica-
tions to bind directly to them for allocating resources and dealing
with other subtle nuances e.g., resource preemption.

3.1.2 Event Handling
We built an asynchronous event processing framework called

Wake, which is based on ideas from SEDA [49], Rx [26] and the
Click modular router [19]. As we will describe in Section 3.2.1, the
Driver interface is comprised of handlers that contain application
code that react to events. Wake allows the Driver Runtime to trade-
off between cooperative thread sharing that synchronously invokes
these event handlers in the same thread, and asynchronous stages,
where events are queued for execution inside of an independent
thread pool. Using Wake, the Driver Runtime has been designed
to prevent blocking from long-running network requests and appli-
cation code. In addition to handling local event processing, Wake
also provides remote messaging facilities built on top of Netty [43].
We use this for a variety of purposes, including full-duplex control-
plane messaging and a range of scalable data movement and group
communication primitives. The latter are used every day to process
millions of events in the Azure Streaming Service (see Section 4.4).
Lastly, we needed to guarantee message delivery to a logical Task
that could physically execute on different Evaluators e.g., due to
a prior failure. Wake provides the needed level of indirection by
addressing Tasks with a logical identifier, which applications bind
to when communicating among Tasks.

3.1.3 Tang Configuration
Configuring distributed applications is well-known to be a dif-

ficult and error prone task [48, 31]. In REEF, configuration is
handled through dependency injection, which is a software design
pattern that binds dependencies (e.g., interfaces, parameter values,
etc.) to dependent objects (e.g., class implementations, instance
variables, constructor arguments, etc.). Google’s Guice [13] is
an example of a dependency injection toolkit that we used in an
early version of REEF. The Guice API is based on binding patterns
that link dependencies (e.g., application Driver implementations)
to dependents (e.g., the REEF Driver interface), and code annota-
tions that identify injection targets (e.g., which class constructors
to use for parameter injection). The dependency injection design
pattern has a number of advantages: client implementation inde-
pendence, reduction of boilerplate code, more modular code, eas-
ier to unit test. However, it alone did not solve the problem of
mis-configurations, which often occurred when instantiating appli-
cation Driver, Context, or Task implementations on some remote
container resources, where it was very difficult to debug.

This motivated us to develop our own dependency injection sys-
tem called Tang, which restricts dynamic bind patterns.6 This re-
striction allows Tang configurations to be strongly typed and easily
verified for correctness through static analysis of bindings; prior
to instantiating client modules on remote resources, thus allow-
ing Tang to catch mis-configuration issues early and provide more
guidance into the problem source. More specifically, a Tang spec-
ification consists of binding patterns that resolve REEF dependen-
cies (e.g., the interfaces of a Driver and Task) to client implementa-
tions. These binding patterns are expressed using the host language
(e.g., Java, C#) type system and annotations, allowing unmodified
IDEs such as Eclipse or Visual Studio to provide configuration in-
formation in tooltips, auto-completion of configuration parameters,
and to detect a wide range of configuration problems (e.g., type
checking, missing parameters) as you edit your code. Since such
functionality is expressed in the host language, there is no need
to install additional development software to get started with Tang.
The Tang configuration language semantics were inspired by recent
work in the distributed systems community on CRDTs (Commuta-
tive Replicated Data Types) [35] and the CALM (Consistency As
Logical Monotonicity) conjecture [3]. Due to space issues, we re-
fer the reader to the online documentation for further details (see
http://reef.incubator.apache.org/tang.html).

3.1.4 Contexts
Retaining state across task executions is central to the REEF de-

sign, and to the support for iterative data flows that cache loop in-
variant data or facilitate delta-based computations e.g., Naiad [27]
and Datalog. Moreover, we also needed the option to clean up state
from prior task executions, which prompted the design of stackable
contexts in the Evaluator runtime. Contexts add structure to Eval-

uator state, and provide the Driver with control over what state
gets passed from one task to the next, which could cross a compu-
tational stage boundary. For example, assume we have a hash-join
operator that consists of a build stage, followed by a probe stage.
The tasks of the build stage construct a hash-table—on the join col-
umn(s) of dataset A—and stores it in the root context that will be
shared with the tasks of the probe stage, which performs the join
with dataset B by looking up matching A tuples in the hash-table.
Let us further assume that the build stage tasks require some scratch
space, which is placed in a (child) scratch context. When the build
stage completes, the scratch context is discarded, leaving the root
context, and the hash-table state, for the probe stage tasks. For
REEF applications, Contexts add fine-grained (task-level) mutable
state management, which could be leveraged for building a DAG
scheduler (like Dryad [16], Tez [33], Hyracks [8]), where vertices
(computational stages) are given a “localized” context for scratch
space, and use the “root” context for passing state.

3.1.5 Services
The central design principle of REEF is in factoring out core

functionalities that can be re-used across a broad range of appli-
cations. To this end, we allow users to deploy services as part
of the Context definition. This facilitates the deployment of dis-
tributed functionalities that can be referenced by the application’s
Driver and Tasks, which in turn eases the development burden
of these modules. For example, we provide a name-based com-
munication service that allows developers to be agnostic about re-
establishing communication with a Task that was re-spawned on a
separate Evaluator; this service works in concert with Wake’s logi-

6Injection of dependencies via runtime code, or what Guice calls
“provider methods.”



cal Task addressing. Services are configured through Tang, making
them easy to compose with application logic.

3.2 Application Framework
We now describe the framework used to capture application logic

i.e., the code written by the application developer. Figure 4 presents
a high-level control-flow diagram of a REEF application. The con-
trol channels are labeled with a number and a description of the in-
teraction that occurs between two entities in the diagram. We will
refer to this figure in our discussion by referencing the control-flow
channel number. For instance, the client (top left) initiates a job
by submitting an Application Master to the Resource Manager
(control-flow 1). In REEF, an Application Master is configured
through a Tang specification, which requires (among other things)
bindings for the Driver implementation. When the Resource Man-
ager launches the Application Master (control-flow 2), the REEF
provided Driver Runtime will start and use the Tang specifica-
tion to instantiate the Driver components i.e., event-handlers de-
scribed below. The Driver can optionally be given a channel to
the client (control-flow 7) for communicating status and receiving
commands e.g., via an interactive application.

3.2.1 Driver
The Driver is responsible for scheduling the task-level work

of an application. For instance, a Driver that schedules a DAG
of data-processing elements—common to many data-parallel run-
times [52, 16, 39, 8, 5, 53]—would launch (per-partition) tasks that
execute the work of individual processing elements in the order of
data dependencies. However, unlike most data-parallel runtimes7,
resources for executing such tasks must first be allocated from the
Resource Manager. This added dimension increases the scheduler
complexity, which motivated the design of the REEF Driver to
adopt an Reactive Extensions (Rx) [26] API8 that consists of asyn-
chronous handlers that react to events triggered by the runtime. We
categorize the events, that a Driver reacts to, along the following
three dimensions:

1. Runtime Events: When the Driver Runtime starts, it passes
a start event to the Driver, which must react by either re-
questing resources (control-flow 3)—using a REEF provided
request module that mimics the underlying resource man-
agement protocol—or by setting an alarm with a callback
method and future time. Failure to do one of these two steps
will result in the automatic shutdown of the Driver. In gen-
eral, an automatic shutdown will occur when, at any point
in time, the Driver does not have any resource allocations,
nor any outstanding resource requests or alarms. Lastly, the
Driver may optionally listen for the stop event, which occurs
when the Driver Runtime initiates its shutdown procedure.

2. Evaluator Events: The Driver receives events for Evalu-

ator allocation, launch, shutdown and failure. An alloca-
tion event occurs when the resource manager has granted a
resource, from an outstanding request, to the Driver. The
Evaluator allocation event API contains methods for con-
figuring the initial Context state (e.g., files, services, ob-
ject state, etc.), and methods to launch the Evaluator on
the assigned resource (via control-flow 4), or release it (de-
allocate) back to the Resource Manager, triggering a shut-
down event. Furthermore, Evaluator allocation events con-
tain resource descriptions that provide the Driver with infor-
mation needed to constrain state and assign tasks e.g., based

7Today, exceptions include Tez [33] and Spark [52].
8Supported by Wake, which was described in Section 3.1.2.

on data-locality. A launch event is trigged when confirma-
tion of the Evaluator bootstrap is received at the Driver.
The launch event includes a reference to the initial Context,
which can be used to add further sub-Context state (described
in Section 3.1.4), and to launch a sequence of Task execu-
tions (one at a time) (via control-flow 5). A failure at the
Evaluator granularity is assumed not to be recoverable (e.g.,
due to misconfiguration or hardware faults), and as a result,
the relevant resource is automatically deallocated, and a fail-
ure event—containing the exception state—is passed to the
Driver. On the other hand, Task events (discussed below) are
assumed to be recoverable, and do not result in an Evaluator

deallocation, allowing the Driver to recover from the issue;
for example, an out-of-memory exception might prompt the
Driver to configure the Task differently e.g., with a smaller
buffer.

3. Task Events: All Evaluators periodically send status up-
dates that include information about its Context state, run-
ning Services and the current Task execution status to the
Driver Runtime (control flow 6). The Task execution sta-
tus is surfaced to the Driver in the form of events: launch,
message, failed, and completion. The launch event API con-
tains methods for terminating or suspending the Task exe-
cution, and a method for sending messages—in the form of
opaque byte arrays—to the running Task (via control-flow
6). Messages sent by the Driver are immediately pushed to
the relevant Task to minimize latency. Task implementations
are also able to send messages (opaque byte arrays) back to
the Driver, which are piggy-backed on the (periodic) Eval-
uator status updates. Furthermore, when a Task completes,
the Driver is passed a completion event that includes a byte
array “return value” of the Task main method (described be-
low). We further note that REEF can be configured to limit
the size of these messages in order to avoid memory pressure.
Lastly, Task failures result in an event that contains the ex-
ception information, but (as previously stated) do not result
in the deallocation of the Evaluator hosting the Task failure.

3.2.2 Task
A Task is a piece of application code that contains a main method,

which will be invoked by the Evaluator. The application-supplied
Task implementation has access to its configuration parameters and
the Evaluator state, which is exposed as Contexts. The Task also
has access to any services that the Driver may have started on the
given Evaluator; for example, a Task could deposit its intermedi-
ate data in a buffer manager service so that it can be processed by
a subsequent Task running on the same Evaluator.

A Task ends when its main method returns with an optional re-
turn value, which REEF presents to the Driver. The Evaluator

catches any exceptions thrown by the Task and includes the excep-
tion state in the failure event passed to the Driver. A Task can
optionally implement a handle for receiving messages sent by the
Driver. These message channels can be used to instruct the Task to
suspend or terminate its execution in a graceful way. For instance, a
suspended Task could return its checkpoint state that can be used to
resume it on another Evaluator. To minimize latency, all messages
asynchronously sent by the Driver are immediately scheduled by
Wake to be delivered to the appropriate Task i.e., REEF does not
wait for the next Evaluator “heartbeat” interval to transfer and de-
liver messages. Wake could be configured to impose a rate limita-
tion, but we have not explored that approach in this initial version,
nor have we encountered such a bottleneck in our applications.



Provided by YARN

Provided by REEF

User Code

Application Master

(1
) 

J
o
b
 S

u
b
m

is
si

o
n

(2) Application Master Launch

(4) Launch Evaluator

(3) Container Requests and

Allocations

Container B

(5) Task Submission

(7) Job Status and Control

Driver Runtime

Driver

Evaluator B (busy)

Task

Container A

Evaluator A

(available)

    
Client

Client APIs

Resource Manager

(6) HeartBeats

Control Flow

Messages

Figure 4: High-level REEF control-flow diagram—running within an example YARN environment—that captures an application with two
Evaluator instances, one of which is running a Task. Each control channel is labeled with a number and description of the interaction that
occurs between the two entities.

C# Java CPP Total
Tang 10,567 6,976 0 17,543

Wake 7,749 4,681 0 12,430
REEF 13,136 15,118 1,854 30,108

Services 0 5,319 0 5,319
Total 31,452 32,094 1854 65,400

Figure 5: Lines of code by component and language

3.3 Implementation
REEF’s design supports applications in multiple languages; it

currently supports Java and C#. Both share the core Driver Run-

time Java implementation via a native (C++) bridge, therefore shar-
ing advancements of this crucial runtime component. The bridge
forwards events between Java and C# application Driver imple-
mentations. The Evaluator is implemented once per language to
avoid any overhead in the performance-critical data path.

Applications are free to mix and match Driver side event han-
dlers in Java and C# with any number of Java and C# Evalua-

tors. To establish communications between Java and C# processes,
Wake is implemented in both languages. Tang is also implemented
in both languages, and supports configuration validation across the
boundary; it can serialize the configuration data and dependency
graph into a neutral form, which is understood by Tang in both en-
vironments. This is crucial for the early error detection in a cross-
language applications. For instance, a Java Driver receives a Java
exception when trying to submit an ill-configured C# Task before
attempting to launch the Task on a remote Evaluator.

To the best of our knowledge, REEF is the only distributed con-
trol flow framework that provides this deep integration across such
language boundaries. Figure 5 gives an overview of the effort in-
volved in the development of REEF, including its cross-language
support.9 About half of the code is in Wake and Tang, while the
other half is in the REEF core runtime. Interestingly, both Tang
and Wake are bigger in C# than in Java. In the case of Wake, this is
largely due to the extensive use of the Netty Java library, which is
not available in C#. For Tang, its Java implementation relies heav-
ily on reflection and leverages the runtime leniency of the Java type

9All numbers where computed on the Apache REEF git
repository found at http://git.apache.org, commit
fa353fdabc8912695ce883380fa962baea2a20fb

system; a luxury that a more rigid and expressive type system like
the C# runtime does not permit.

3.4 Discussion
REEF is an active open-source project that started in late 2012.

Over the past two years, we have refined our design based on feed-
back from many communities. The initial prototype of REEF’s
application interface were based on the Java Concurrency Library.
When the Driver made a request for containers, it was given a list
of objects representing allocated evaluators wrapped in Java Fu-
tures. This design required us to support a pull-based API, whereby
the client could request the underlying object, even though the con-
tainer for that object was not yet allocated, turning it into blocking
method call. Extending the Future interface to include callbacks
somewhat mitigated this issue. Nevertheless, writing distributed
applications, like a MapReduce runtime, against this pull-based
API was brittle; especially in the case of error handling e.g., ex-
ceptions thrown in arbitrary code interrupted the control-flow in a
manner that was not always obvious, instead of being pushed to a
specific (e.g., Task) error event-handler that has more context. As
a result, we rewrote the REEF interfaces around an asynchronous
event processing (push-based) model implemented by Wake, which
greatly simplified both the REEF runtime and application-level code.
For example, under the current event processing model, we have
less of a need for maintaining bookkeeping state e.g., lists of Future
objects representing outstanding resource requests. Wake also sim-
plified performance tuning by allowing us to dedicate Wake thread
pools to heavily loaded event handlers, without changes to the un-
derlying application (handler) code.

4. APPLICATIONS
This section describes several applications built on REEF, rang-

ing from basic applications to production level services. We start
with an interactive distributed shell to further illustrate the life-
cycle of a (basic) REEF application. Next, we highlight the benefits
of developing on REEF with a novel class of machine learning re-
search enabled by the REEF abstractions. We then conclude with
a description of two real-world applications that leverage REEF to
deploy on YARN, emphasizing the ease of development on REEF.
The first is a Java version of CORFU [4], which is a distributed
log service. The second is Azure Streaming Analytics, which is



a publicly available service deployed on the Azure Cloud Plat-
form. Additional REEF applications and tutorials can be found at
http://reef.incubator.apache.org.

4.1 Distributed Shell
We illustrate the life-cycle of a REEF application with a sim-

ple interactive distributed shell, modeled after the YARN example
described in Section 2.1. Figure 6 depicts an execution of this ap-
plication on two Evaluators (i.e., on two machines) that execute
Tasks running a desired shell command. During the course of this
execution, the Evaluators enter different states defined by time-
steps t1, t2, t3, t4 e.g., in time-step t2, both Evaluators are executing
Task 1. The lines in the figure represent control flow interactions
and are labeled with a numbering scheme (e.g., i1 for inter-

action 1) that we refer to in our description below.
The application starts at the Client, which submits the Distributed

Shell Driver (DSD) to the Resource Manager (RM) for execution;
this interaction is labeled (i1). The RM then launches the Driver

Runtime as an Application Master. The Driver Runtime bootstrap
process establishes a bidirectional communication channel with the
Client (i3) and sends a start event to the DSD, which requests two
containers (on two separate machines) with the RM (i2). The RM
will eventually send container allocation notifications to the Driver

Runtime, which sends allocation events to the DSD. The DSD uses
those events to submit a root Context—defining the initial state on
each Evaluator—to the Driver Runtime, which uses the root Con-
text configuration to launch the Evaluators in containers started
by the Node Managers.

The Evaluator bootstrap process establishes a bidirectional con-
nection to the Driver Runtime (i4). At time t1, the Evaluator in-
forms the Driver Runtime that it has started and that the root Con-
text is active. The Driver Runtime then sends two active con-
text events to the DSD, which relays this information to the Client
via (i3). The Client is then prompted for a shell command. An
entered command is sent via (i3) and eventually received by the
DSD in the form of a client message event. The DSD uses the
shell command in that message to configure Task 1, which is sub-
mitted to the Driver Runtime for execution on both Evaluators.
The Driver Runtime forwards the Task 1 configuration via (i4) to
the Evaluators, which execute an instance of Task 1 in time-step
t2. Note that Task 1 may change the state in the root Context.
When Task 1 completes in time-step t3, the Evaluator informs the
Driver Runtime via (i4). The DSD is then passed a completed task
event containing the shell command output, which is sent to the
client via (i3). After receiving the output of Task 1 on both Eval-

uators, the Client is prompted for another shell command, which
would be executed in a similar manner by Task 2 in time-step t4.

Compared to the YARN distributed shell example described in
Section 2.1, our implementation provides cross-language support
(we implemented it in Java and C#), is runnable in all runtimes that
REEF supports, and presents the client with an interactive terminal
that submits subsequent commands to retained Evaluators, avoid-
ing the latency of spawning new containers. Further, the REEF dis-
tributed shell exposes a RESTful API for Evaluator management
and Task submission implemented using a REEF HTTP Service,
which takes care of tedious issues like finding an available port and
registering it with the Resource Manager for discovery.

Even though the core distributed shell example on REEF is much
more feature rich, it comes in at less than half the code (530 lines)
compared to the YARN version (1330 lines).

4.2 Distributed Machine Learning
Many state-of-the-art approaches to distributed machine learning

target abstractions like Hadoop MapReduce [10, 40]. Part of the at-
traction of this approach is the transparent handling of failures and
other elasticity events. This effectively shields the algorithm de-
velopers from the inherently chaotic nature of a distributed system.
However, it became apparent that many of the policy choices and
abstractions offered by Hadoop are not a great fit for the iterative
nature of machine learning algorithms [50, 1, 47]. This lead to pro-
posals of new distributed computing abstractions specifically for
machine learning [7, 52, 23, 24, 22]. Yet, policies for resource al-
location, bootstrapping, and fault-handling remain abstracted way
through a high-level domain specific language (DSL) [7, 52] or
programming model [23, 24, 22].

In contrast, REEF offers a lower-level programming abstraction
that can be used to take advantage of algorithmic optimizations.
This added flexibility sparked a line of ongoing research that inte-
grates the handling of failures, resource starvation and other elas-
ticity challenges directly into the machine learning algorithm. We
have found a broad range of algorithms can benefit from this ap-
proach, including linear models [28], principal component analy-
sis [21] and Bayesian matrix factorization [6]. Here, we highlight
the advantages that a lower-level abstraction like REEF offers for
learning linear models, which are part of a bigger class of Statistical
Query Model algorithms [18].

4.2.1 Linear Models
The input to our learning method is a dataset D of examples

(xi,yi) where xi ∈ Rd denotes the features and yi ∈ R denotes the
label of example i. The goal is to find a linear function fw(x j) =〈
x j,w

〉
with w ∈ Rd that predicts the label for a previously unseen

example. This goal can be cast as finding the minimizer ŵ for the
following optimization problem:10

ŵ = argmin
w

∑
x,y∈D

l( fw(x),y) = argmin
w

∑
x,y∈D

l(〈x,w〉 ,y) (1)

Here, l( f ,y) is the loss function the model ŵ is to minimize, e.g. the
squared error l( f ,y) = 1

2 ( f −y)2. This function is typically convex
and differentiable in f and therefore the optimization problem (1)
is convex and differentiable in w, and therefore can be minimized
with a simple gradient-based algorithm.

The core gradient computation of the algorithm decomposes per
example. This allows us to partition the dataset D into k parti-
tions D1,D2, . . . ,Dk and compute the gradient as the sum of the
per-partition gradients. This property gives rise to a simple paral-
lelization strategy: assign each Evaluator a partition Di and launch
a Task to compute the gradient on a per-partition basis. The per-
partition gradients are aggregated (i.e., summed up) to a global gra-
dient, which is used to update the model w. The new model is then
broadcast to all Evaluator instances, and the cycle repeats.

4.2.2 Elastic Group Communications
In parallel work, we designed an elastic group communications

library as a REEF Service that exposes Broadcast and Reduce op-
erators familiar to Message Passing Interface (MPI) [14] program-
mers. It can be used to establish a communication topology among
a set of leaf Task participants and a root Task. The leaf Tasks are
given a Reduce operator to send messages to the root Task, which
can aggregate those messages and use a Broadcast operator to send
a message to all leaf Tasks. If the Reduce operation is associative,

10Note that we omit the regularizer which, despite its statistical im-
portance, does not affect the distribution strategy.



Client

Driver Runtime

Resource
Manager

(RM)

i1

i2

i3

Context Context Context Context

Task 1 Task 2

Evaluator A at different times

Context Context Context Context

Task 1 Task 2

Evaluator B at different times

i4

t1

t1 t2 t3 t4

t4t3t2

i4

YARN Node Manager (NM)

YARN Node Manager (NM)

Distributed 
Shell Driver

(DSD)

Figure 6: A Client executing the distributed shell job on two Evaluators A and B. The Evaluators execute shell commands—submitted by
the Client—in Task 1 and Task 2 at time instances t2 and t4.

then a tree topology is established, with internal nodes performing
the pre-aggregation steps. The Service also offers synchronization
primitives that can be used to coordinate bulk-synchronous pro-
cessing (BSP) [45] rounds. Crucially, the Service delegates topol-
ogy changes to the application Driver, which can decide how to
react to the change, and instruct the Service accordingly. For ex-
ample, the loss of a leaf Task can be simply ignored, or repaired
synchronously or asynchronously.11 And the loss of the root Task
can be repaired synchronously or asynchronously. The application
is notified when asynchronous repairs have been made.

In an elastic learning algorithm, the loss of leaf Tasks can be un-
derstood as the loss of partitions Di in the dataset. We can interpret
these faults as being a sub-sample of the data, in the absence of any
statistical bias that this approach could introduce. This allows us to
tolerate faults algorithmically, and avoid pessimistic fault-tolerance
policies enforced by other systems e.g., [52, 1, 11, 23, 24]. The per-
formance implications are further elaborated in Section 5.2, and in
greater detail in [28].

4.3 CORFU on REEF
CORFU [4] is a distributed logging tool providing applications

with consistency and transactional services at extremely high through-
put. There are a number of important use cases which a shared,
global log enables:

• It may be used for driving remote checkpoint and recovery.
• It exposes a log interface with strict total-ordering and can

drive replication and distributed locking.
• It may be leveraged for transaction management.

Importantly, all of these services are driven with no I/O bottle-
necks using a novel paradigm that separates control from the stan-
dard leader-IO, which prevails in Paxos-based systems. In a nut-
shell, internally a CORFU log is striped over a collection of logging
units. Each unit accepts a stream of logging requests at wire-speed
and sequentializes their IO. In aggregate, data can be streamed in
parallel to/from logging-units at full cluster bisection bandwidth.
There are three operational modes, in-memory, non-atomic persist,
and atomic-persist. The first logs data only in memory (replicated
across redundant units for "soft" fault tolerance). The second logs
data opportunistically to stable storage, with optional explicit sync

11The loss of an internal node in a tree topology can be modeled as
the loss of a set of leaf Task nodes.

barriers. The third persists data immediately before acknowledg-
ing appends. A soft-state sequencer process regulates appends in
a circular fashion across the collection of stripes. A CORFU mas-
ter controls the configuration, growing and shrinking the stripe-set.
Configuration changes are utilized both for failure recovery and for
load-rebalancing.

The CORFU architecture perfectly matches the REEF template.
CORFU components are implemented as task modules, one for the
sequencer, and one for each logging-unit. The CORFU master is
deployed in a REEF Driver, which provides precisely the control
and monitoring capabilities that the CORFU master requires. For
example, when a logging unit experience a failure, the Driver is in-
formed, and the CORFU master can react by deploying a replace-
ment logging unit and reconfiguring the log. In the same man-
ner, the CORFU master interacts with the log to handle sequencer
failures, to react when a storage unit becomes full, and for load-
rebalancing.

An important special failure case is the CORFU master itself.
For applications like CORFU, it is important that a master does
not become a single point of failure. REEF provides Service util-
ities for triggering checkpointing and for restarting a Driver from
a checkpoint. The CORFU master uses these hooks to backup
the configuration-state it holds onto the logging units themselves.
Should the master fail, a recovery CORFU Driver is deployed by
the logging units.

In this way, REEF provides a framework that decouples CORFU’s
resource deployment from its state, allowing CORFU to be com-
pletely elastic for fault tolerance and load-management.

Using CORFU from REEF: A CORFU log may be used from
other REEF jobs by linking with a CORFU client-side library. A
CORFU client finds (via CORFULib) the CORFU master over a
publicized URL. The master informs the client about direct ports
for interacting with the sequencer and the logging-units. Then,
CORFULib interacts with the units to drive operations like log-
append and log-read directly over the interconnect.

CORFU as a REEF service: Besides running as its own ap-
plication, CORFU can also be deployed as a REEF Service. The
Driver side of this Service subscribes to the events as described
above, but now in addition to the other event handlers of the ap-
plication. The CORFU and application event handlers compose
to form the Driver and jointly implement the control-flow of the
application, each responsible for a subset of the Evaluators. This
greatly simplifies the deployment of such an application, as CORFU



then shares the event life-cycle with it and does not need external
coordination.

4.4 Azure Stream Analytics
Azure Stream Analytics (ASA) is a fully managed stream pro-

cessing service offered in the Microsoft Azure Cloud. It allows
users to setup resilient, scalable queries over data streams that could
be produced in “real-time.” The service hides many of the technical
challenges from its users, including machine faults and scaling to
millions of events per second. While a description of the service
as a whole is beyond the scope here, we highlight how ASA uses
REEF to achieve its goals.

ASA implements a REEF Driver to compile and optimize–taking
user budgets into consideration–a query into a data-flow of pro-
cessing stages, similar to [30, 44, 33, 16, 53, 8, 5, 52]. Each
stage is parallelized over a set of partitions i.e., an instance of a
stage is assigned to process each partition in the overall stage in-
put. Partitioned data is pipelined from producer stages to consumer
stages according to the (compiled) data-flow. All stages must be
started before query processing can begin on input data streams.
The Driver uses the stage data-flow to formulate a request for re-
sources; specifically, an Evaluator is requested per-stage instance.
A Task is then launched on each Evaluator to execute the stage
instance work on an assigned partition. It is highly desirable that
this bootstrap process happens quickly to aid experimentation.

At runtime, an ASA Task is supported by two REEF Services,
which aided in shortening the development cycle. The first is a
communications Service built on Wake for allowing Tasks to send
messages to other Tasks based on a logical identifier, which is in-
dependent to the Evaluator on which they execute, making Task

restart possible on alternate Evaluator locations. The communi-
cation Service is highly optimized for low-latency message ex-
change, which ASA uses to communicate streaming partitions be-
tween Tasks. The second is the checkpointing Service that pro-
vides each Task with an API for storing intermediate state to stable
storage, and an API to fetch that state e.g., on Task restart.

ASA is a production-level service that has had very positive in-
fluence on recent REEF developments. Most notably, REEF now
provides mechanisms for capturing the Task-level log files—on the
containers where the Task instances executed—to a location that
can be viewed (postmortem) locally. Another recent development
is an embedded HTTP server as a REEF Service that can be used
to examine log files and execution status at runtime. These arti-
facts were motivated during the development and initial deploy-
ment phases of ASA. Further extensions and improvements are
expected as more production-level services (already underway at
Microsoft) are developed on REEF.

4.5 Summary
The applications described in this section underscore our original

vision of REEF as being:

1. A flexible framework for developing distributed applications
on Resource Manager services.

2. A standard library of reusable system components that can
be easily composed (via Tang) into application logic.

Stonebraker and Cetintemel argued that the “one size fits all model”
is no longer applicable to the database market [36]. We believe
this argument naturally extends to “Big Data” applications. Yet,
we also believe that there exists standard mechanisms common to
many such applications. REEF is our attempt to provide a founda-
tion for the development of that common ground in open source.

Wake Event REEF Task YARN Container
Time(ns) 1 30,000 1.2E7

Figure 7: Startup times for core REEF primitives

1,000 tasks 5,000 tasks

10,000 tasks 100,000 tasks
0%

20%
40%
60%

0%
5%

10%
15%

0%
2%
4%
6%
8%

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%

8 16 32 64 12
8 8 16 32 64 12
8

Number of evaluators

O
ve

rh
ea

d

Figure 8: Combined (REEF + YARN) overheads for jobs with
short-lived (1 second) tasks

5. EVALUATION
Our evaluation focuses on microbenchmarks (Section 5.1) that

examine the overheads of REEF for allocating resources, bootstrap-
ping Evaluator runtimes, and launching Task instances; we then
report on a task launch overhead comparison with Apache Spark.
Section 5.2 then showcases the benefits of the REEF abstractions
with the elastic learning algorithm (from Section 4).

Experimental setup: We report experiments in three environ-
ments. The first is using the local process runtime. The second is
based on YARN version 2.6 running on a cluster of 35 machines
equipped with 128GB of RAM and 32 cores; each machine runs
Linux and Java 1.7. We submit one job at a time to an empty cluster
to avoid job scheduling queuing effects. Third, we leveraged Mi-
crosoft Azure to allocate 25 D4 instances (8 cores, 28 GB of RAM
and 400 GB of SSD disk each) in an experiment that compares the
overheads of REEF to Apache Spark [52].

5.1 Microbenchmark
Key primitive measurements: Figure 7 shows the time it takes

to dispatch a local Wake Event, bootstrap an Evaluator, and launch
a Task. There are roughly three orders of magnitude difference
in time between these three actions. This supports our intuition
that there is a high cost to reacquiring resources for different Task
executions. Further, Wake is able to leverage multi-core systems
in its processing of fine-grained events, achieving a throughput rate
that ranges from 20-50 million events per second per machine.

Overheads with short-lived Tasks: In this experiment, the Driver
is configured to allocate a fixed number of Evaluators and launch
Tasks that sleep for one second, and then exit. This setup provides
a baseline (ideal) job time interval (i.e., #Tasks ∗ one second) that
we can use to assess the combined overhead of allocating and boot-
strapping Evaluators, and launching Tasks. Figure 8 evaluates this
setup on jobs configured with various numbers of Evaluators and
Tasks. The combined overhead is computed from actual runtime

ideal runtime −1,
where:

ideal runtime =
#Tasks∗ task execution time

#Evaluators
.

The figure shows that as we run more Tasks per Evaluator, we
amortize the cost of communicating with YARN and launching
Evaluators, and the overall job overhead decreases. This is con-
sistent with the earlier synthetic measurements that suggest spawn-
ing tasks is orders of magnitudes faster than launching Evaluators.



 1

 10

 100

10^3 10^4 10^5 10^6

O
ve

rh
ea

d 
(s

ec
on

ds
)

Number of tasks

REEF
Spark

(a) Absolute running time (y-axis) of
jobs with varying numbers of tasks
(x-axis).

 0.1

 1

 10

 100

10^3 10^4 10^5 10^6

O
ve

rh
ea

d 
(%

)

Number of tasks

REEF
Spark

(b) Computed overheads (y-axis) of
jobs with varying numbers of tasks
(x-axis).

Figure 9: Overheads of REEF and Apache Spark for jobs with
short-lived (100ms) tasks.

Since job parallelism is limited to the number of Evaluators, jobs
with more Evaluators suffer higher overheads but finish faster.

Comparison with Apache Spark: Next, we leveraged 25 D4
Microsoft Azure instances (the third experimental setup) to run a
similar experiment comparing to Apache Spark. Out of the total
200 cores available, we allocated 300 YARN containers, each with
1GB of available memory. In addition, each application master was
allocated 4GB of RAM. The experiment begins by instantiating a
task runtime (an Evaluator in the REEF case, and an Executor

in the Spark case) on each container. The respective application
masters then begin to launch a series of tasks, up to a prescribed
number. The combined overhead is computed as above.

Before reporting results for this experiment, we first describe the
differences in the overheads for launching tasks. In Spark, launch-
ing a task requires transferring a serialized closure object with all
of its library dependencies to the Spark Executor, which caches
this information for running subsequent tasks of the same type i.e.,
stage. In REEF, library dependencies are transferred upfront i.e.,
when the Evaluator is launched. This highlights a key difference
in the REEF design, which assumes complete visibility into what
tasks will run on an Evaluator. Thus, the overhead cost of launch-
ing a Task in REEF boils down to the time it takes to package and
transfer its Tang configuration.

Figure 9 reports on the overheads of REEF and Apache Spark
for jobs that execute a fixed number of tasks configured to sleep
for 100ms before exiting. The total running time is reported in Fig-
ure 9a and the percentage of time spent on overhead work (i.e., total
running time normalized to ideal running time) is in Figure 9b. In
all cases, the overhead in REEF is less than Spark. In both sys-
tems, the overheads diminish as the job size (i.e., number of tasks)
increases. On the lower end of the job size spectrum, Spark over-
heads for transferring task information (e.g., serialized closure and
library dependencies) are much more pronounced; larger jobs ben-
efit from the caching this information on the Executor. At larger
job sizes, both system overheads converge to about the same (per-
centage) amount.

Evaluator/Task allocation and launch time breakdown: Here
we dive deeper into the time it takes to allocate resources from
YARN, spawn Evaluators, and launching Tasks. Figure 10 shows
these times (as a stacked graph) for a job that allocates 256 Evalu-

ators. The red and green portions are very pessimistic estimates of
the REEF overhead in starting an Evaluator on a Node Manager
and launching a Task on a running Evaluator, respectively. The
majority of the time is spent in container allocation (blue portion)
i.e., the time from container request submission to the time the allo-
cation response is received by the Driver; this further underscores

0

5

10

15

0 32 64 96 128 160 192 224 256
Number of evaluators allocated

T
im

e 
(s

)

Container
Allocation

Evaluator
Launch

Task
Launch

Figure 10: Evaluator/Task allocation and launch time breakdown

the need to minimize such interactions with YARN by retaining
Evaluators for recurring Task executions.

The time to launch an Evaluator on an allocated container is
shown by the red portion, which varies between different Evalu-
ators. YARN recognizes when a set of processes (from its per-
spective) share files (e.g., code libraries), and only copies such files
once from the Application Master to the Node Manager. This in-
duces higher launch times for the first wave of Evaluators. Later
scheduled Evaluators launch faster, since the shared files are al-
ready on the Node Manager from earlier Evaluator executions;
recall, we are scheduling 256 Evaluators on 35 Node Managers.
Beyond that, starting a JVM and reporting back to the Driver adds
about 1-2 seconds to the launch time for all Evaluators. The time
to launch a Task (green porition) is fairly consistent (about 0.5 sec-
onds) across all Evaluators.

5.2 Resource Elastic Machine Learning
In this section, we evaluate the elastic group communications

based machine learning algorithm described in Section 4.2. The
learning task is to learn a a linear logistic regression mode using a
Batch Gradient Descent (BGD) optimizer. We use two datasets for
the experiments, both derived from the splice dataset described
in [1]. The raw data consists of strings of length 141 with 4 alpha-
bets (A, T, G and C).
Dataset A contains a subset of 4 million examples sampled from
splice was used to derive binary features that denote the pres-
ence or absence of n-grams at specific locations of the string with
n = [1,4]. The dimensionality of the feature space is 47,028. This
dataset consists of 14GB of data.
Dataset B contains the entire dataset of 50 million examples was
used to derive the first 100,000 features per the above process. This
dataset consists of 254GB of data.

Algorithm: We implemented the BGD algorithm described in
Section 4.2.1 on top of the elastic group communications Service

described in Section 4.2.2. The Driver assigns a worker Task to
cache and process each data partition. Each worker Task produces
a gradient value that is reduced to a global gradient on the root
Task using the Reduce operator. The root Task produces a new
model that is Broadcast to the worker Tasks. The job executes in
iterations until convergence is achieved.

Developing on REEF: REEF applications can be easily moved
between Environment Adapters (3.1.1). We used this to first de-
velop and debug BGD using the Local Process adapter. We then
moved the application to YARN with only a single configuration
change. Figure 11 shows the convergence rate of the algorithm
running on Dataset A on the same hardware in these two modes:
“Local” denotes a single cluster machine. In the YARN mode, 14
compute Tasks are launched to process the dataset. The first thing



Lo
ca

l s
ta

rt

YA
R

N
 s

ta
rt

YA
R

N
 e

nd
Lo

ca
l e

nd

0.2

0.4

0.6

1.
8

2.
7 5 15 30 67 81

Time (log scale, minutes)

O
bj

ec
tiv

e 
fu

nc
tio

n Runtime environment

Local YARN

Figure 11: Objective function over time for Dataset A when exe-
cuting locally and on a YARN cluster

0.55

0.60

0.65

0.70

0.75

0 5 10 15
Time (min.)

O
bj

ec
tiv

e 
fu

nc
tio

n

Non−elastic BGD

Elastic BGD

Figure 12: Ramp-up experiment on Dataset B

to note is that the algorithm performs similarly in both environ-
ments. That is, in each iteration, the algorithm makes equivalent
progress towards convergence. The main difference between these
two environments is in the start-up cost and the response time of
each iteration. YARN suffers from a higher start-up cost due to the
need to distribute the program, but makes up for this delay during
execution, and converges about 14 minutes earlier than the local
version. Considering the 14x increased hardware, this is a small
speedup that suggests to execute the program on a single machine
which REEF’s Environment Adapters made it easy to discover.

Elastic BGD: Resource Managers typically allocate resources as
they become available. Traditional MPI-style implementations wait
for all resources to come online before they start computing. In this
experiment, we leverage the Elastic Group Communications Ser-

vice to start computing as soon as the first Evaluator is ready. We
then add additional Evaluators to the computation as they become
available. Figure 12 plots the progress in terms of the objective
function measured on the full dataset over time for both elastic and
non-elastic versions of the BGD job. The line labeled Non-elastic
BGD waits for all Evaluators to come online before executing the
first iteration of the learning algorithm. The line labeled Elastic
BGD starts the execution as soon as the first Evaluator is ready,
which occurs after the data partition is cached. New Evaluators

are incorporated into the computation at iteration boundaries.
We executed these two strategies on an idle YARN cluster, which

means that resource requests at the Resource Manager were imme-
diately granted. Therefore, the time taken for an Evaluator to be-
come ready was in (1) the time to bootstrap it, and (2) the time to
execute a Task that loaded and cached data in the root Context. As
the Figure shows, the elastic approach is vastly preferable in an on-
demand resource managed setting. In effect, elastic BGD (almost)
finishes by the time the non-elastic version starts.

While this application-level elasticity is not always possible, it
is often available in machine learning where each machine repre-
sents a partition of the data. Fewer partitions therefore represent a

Dataset A Dataset B

0.12
0.14
0.16
0.18
0.20

0.53
0.54
0.55
0.56
0.57

0 250 500 750 1000 25 50 75 100
Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

No
failures

Ignore
failed partitions

Approximate
failed partitions

Figure 13: Learning progress over iterations with faulty partitions.
Grey areas between iterations 250..375 for Dataset A and 25..75 for
Dataset B indicate the period of induced failure.

●

●

●

●

●

●

●

2

3

4

4 32 64 128 256
Number of partitions

T
im

e 
pe

r
ite

ra
tio

n 
(s

)
Figure 14: Scale-out iteration time with partitions of 1GB.

smaller sample of the data set. And models obtained on small sam-
ples of the data can provide good starting points [9] for subsequent
iterations on the full data.

Algorithmic fault handling: We consider machine failure dur-
ing the execution. We compare three variants: (1) No failure;
(2) ignoring the failure and continuing with the remaining data
and (3) our proposal: use a first-order Taylor approximation of the
missing partitions’ input until the partitions come back online. Fig-
ure 13 shows the objective function over iterations. Our method
shows considerable improvement over the baselines. Surprisingly,
we even do better than the no failure case. This can be explained by
the fact that the use of the past gradient has similarities to adding
a momentum term which is well-known to have a beneficial ef-
fect [32].

Scale-out: Figure 14 shows the iteration time for varying scale-
up factors. It grows logarithmically as the the data scales linearly
(each partition adds approximately 1GB of data). This is positive
and expected, as our Reduce implementation uses a binary aggre-
gation tree; doubling the Evaluator count adds a layer to the tree.

6. RELATED WORK
REEF provides a simple and efficient framework for building

distributed systems on Resource Managers like YARN [46] and
Mesos [15]. REEF replaces software components common across
many system architectures [39, 33, 52, 5, 8, 16, 53] with a general
framework for developing the specific semantics and mechanisms
in a given system e.g., data-parallel operators, an explicit program-
ming model, or domain-specific language (DSL). Moreover, REEF
is designed to be extensible through its Service modules, offer-
ing applications with library solutions to common mechanisms e.g.,
group communication, data shuffle, or a more general RDD [52]-
like abstraction, which could then be exposed to other higher-level
programming models (e.g., MPI).



With its support for state caching and group communication,
REEF greatly simplifies the implementation of iterative data pro-
cessing models such as those found in GraphLab [23], Twister [12],
Giraph [38], and VW [1]. REEF can also be leveraged to sup-
port stream processing systems such as Storm [25] and S4 [29] on
managed resources, as demonstrated with Azure Streaming Ana-
lytics (Section 4.4). Finally, REEF has been designed to facilitate
hand-over of data across frameworks, short-circuiting many of the
HDFS-based communications and parsing overheads incurred by
state-of-the-art systems.

The Twill project [42] and REEF both aim to simplify applica-
tion development on top of resource managers. However, REEF
and Twill go about this in different ways. Twill simplifies program-
ming by exposing a developer abstraction based on Java Threads
that specifically targets YARN, and exposes an API to an exter-
nal messaging service (e.g., Kafka [20]) for its control-plane sup-
port. On the other hand, REEF provides a set of common building
blocks (e.g., job coordination, state passing, cluster membership)
for building distributed applications, virtualizes the underlying Re-
source Manager layer, and has a custom built control-plane that
scales with the allocated resources.

Slider [41] is a framework that makes it easy to deploy and man-
age long-running static applications in a YARN cluster. The focus
is to adapt existing applications such as HBase and Accumulo [37]
to run on YARN with little modification. Therefore, the goals of
Slider and REEF are different.

Tez [33] is a project to develop a generic DAG processing frame-
work with a reusable set of data processing primitives. The focus
is to provide improved data processing capabilities for projects like
Hive, Pig, and Cascading. In contrast, REEF provides a generic
layer on which diverse computation models, like Tez, can be built.

7. SUMMARY AND FUTURE WORK
We embrace the industry-wide architectural shift towards decou-

pling resource management from higher-level applications stacks.
In this paper, we propose a natural next step in this direction, and
present REEF as a scale-out computing fabric for resource man-
aged applications. We started by analyzing popular distributed data-
processing systems, and in the process we isolated recurring themes,
which seeded the design of REEF. We validated these design choices
by building several applications, and hardened our implementation
to support a commercial service in the Microsoft Azure Cloud.

REEF is an ongoing project and our next commitment is towards
providing further building-blocks for data processing applications.
Specifically, we are actively working on a checkpoint service for
fault-tolerance, a bulk-data transfer implementation that can “shuf-
fle” massive amounts of data, an improved low-latency group com-
munication library, and an abstraction akin to RDDs [51], but ag-
nostic to the higher-level programming model. Our intention with
these efforts is to seed a community of developers that contribute
further libraries (e.g., relational operators, machine learning toolk-
its, etc.) that integrate with one another on a common runtime.
In support of this goal, we have set up REEF as an Apache In-
cubator project. Code and documentation can be found at http:
//reef.incubator.apache.org. The level of engagement both
within Microsoft and from the research community reinforces our
hunch that REEF addresses fundamental pain-points in distributed
system development.

Acknowledgements
We would like to thank our many partners in the Microsoft Big
Data product groups and the SNU CMSLab group for their feed-

back and guidance in the development of REEF. This work is sup-
ported at SNU by a Microsoft Research Faculty Fellowship. Addi-
tionally, REEF is supported in academia at UCLA through grants
NSF IIS-1302698 and CNS-1351047, and U54EB020404 awarded
by the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB) through funds provided by the trans-NIH Big Data to
Knowledge (BD2K) initiative (www.bd2k.nih.gov). Lastly, we
would like to thank Matteo Interlandi for running the experiments
that compare the overheads of REEF versus Apache Spark.

8. REFERENCES

[1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A
reliable effective terascale linear learning system. CoRR,
abs/1110.4198, 2011.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. J. Smola. Scalable inference in latent variable models. In
WSDM ’12, 2012.

[3] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak.
Consistency analysis in bloom: a calm and collected
approach. In CIDR, pages 249–260, 2011.

[4] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran,
M. Wei, and T. Wobber. Corfu: A distributed shared log.
ACM Transactions on Computer Systems (TOCS), 31(4):10,
2013.

[5] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A programming model and
execution framework for web-scale analytical processing. In
SOCC, 2010.

[6] A. Beutel, M. Weimer, V. Narayanan, and Y. Z. Tom Minka.
Elastic distributed bayesian collaborative filtering. In NIPS
workshop on Distributed Machine Learning and Matrix
Computations, 2014.

[7] V. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis,
T. Condie, M. Weimer, and R. Ramakrishnan. Declarative
systems for large-scale machine learning. TCDE, 35(2),
2012.

[8] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A flexible and extensible foundation for
data-intensive computing. In ICDE, 2011.

[9] O. Bousquet and L. Bottou. The tradeoffs of large scale
learning. In Advances in Neural Information Processing
Systems, pages 161–168, 2007.

[10] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun. Map-reduce for machine learning on
multicore. In Advances in Neural Information Processing
Systems, 2006.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51, 2008.

[12] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox. Twister: a runtime for iterative
mapreduce. In HPDC, 2010.

[13] Google. Guice. https://github.com/google/guice.
[14] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,

B. Nitzberg, W. Saphir, and M. Snir. MPI - The Complete
Reference: Volume 2, The MPI-2 Extensions. MIT Press,
Cambridge, MA, USA, 1998.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In NSDI, pages 22–22. USENIX Association, 2011.



[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In Eurosys, 2007.

[17] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
analysis of traces from a production mapreduce cluster. In
Proceedings of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
CCGRID ’10, pages 94–103, Washington, DC, USA, 2010.
IEEE Computer Society.

[18] M. Kearns. Efficient noise-tolerant learning from statistical
queries. J. ACM, 45(6):983–1006, 1998.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems (TOCS), 18(3):263–297, 2000.

[20] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed
messaging system for log processing. In NetDB, 2011.

[21] A. Kumar, N. Karampatziakis, P. Mineiro, M. Weimer, and
V. Narayanan. Distributed and scalable pca in the cloud. In
BigLearn NIPS Workshop, 2013.

[22] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
Proc. OSDI, pages 583–598, 2014.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A New Parallel Framework for
Machine Learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), Catalina Island, California, 2010.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the ACM
SIGMOD International Conference on Management of data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[25] N. Marz. Storm: Distributed and fault-tolerant realtime
computation. http://storm.apache.org.

[26] E. Meijer. Your mouse is a database. Commun. ACM,
55(5):66–73, 2012.

[27] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A timely dataflow system. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 439–455,
New York, NY, USA, 2013. ACM.

[28] S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie,
S. Sellamanickam, and S. S. Keerthi. Towards
resource-elastic machine learning. In BigLearn NIPS
Workshop, 2013.

[29] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In ICDMW, 2010.

[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proceedings of the ACM SIGMOD
international conference on Management of data, SIGMOD
’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[31] A. Rabkin. Using program analysis to reduce
misconfiguration in open source systems software. Ph.D.
Dissertation, UC Berkeley, 2012.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. Technical
report, DTIC Document, 1985.

[33] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,
and C. Curino. Apache tez: A unifying framework for

modeling and building data processing applications. In
SIGMOD 2015, 2015.

[34] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In EuroSys, pages 351–364, 2013.

[35] M. Shapiro and N. M. Preguiça. Designing a commutative
replicated data type. CoRR, abs/0710.1784, 2007.

[36] M. Stonebraker and U. Cetintemel. One size fits all: An idea
whose time has come and gone. In Proceedings of the 21st
International Conference on Data Engineering, ICDE ’05,
pages 2–11, Washington, DC, USA, 2005. IEEE Computer
Society.

[37] The Apache Software Foundation. Apache Accumulo.
http://accumulo.apache.org/.

[38] The Apache Software Foundation. Apache Giraph.
http://giraph.apache.org/.

[39] The Apache Software Foundation. Apache Hadoop.
http://hadoop.apache.org.

[40] The Apache Software Foundation. Apache Mahout.
http://mahout.apache.org.

[41] The Apache Software Foundation. Apache Slider.
http://slider.incubator.apache.org/.

[42] The Apache Software Foundation. Apache Twill.
http://twill.incubator.apache.org/.

[43] The Netty project. Netty. http://netty.io.
[44] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive – a
warehousing solution over a map-reduce framework. In
PVLDB, 2009.

[45] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[46] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In SOCC, 2013.

[47] M. Weimer, S. Rao, and M. Zinkevich. A convenient
framework for efficient parallel multipass algorithms. In
LCCC, 2010.

[48] M. Welsh. What I wish systems researchers would work on.
http://matt-welsh.blogspot.com/2013/05/

what-i-wish-systems-researchers-would.html.
[49] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for

well-conditioned, scalable internet services. In SIGOPS,
volume 35, pages 230–243. ACM, 2001.

[50] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient
boosted distributed decision trees. In Proceedings of the 18th
ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 2061–2064, New York, NY,
USA, 2009. ACM.

[51] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, 2012.

[52] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
HotCloud, 2010.

[53] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and
D. Shakib. Scope: Parallel databases meet mapreduce. VLDB
Journal, 21(5), 2012.


