
Elastic Distributed Bayesian Collaborative Filtering

Alex Beutel
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

abeutel@cs.cmu.edu

Markus Weimer
Microsoft

Redmond, WA
mweimer@microsoft.com

Tom Minka
Microsoft Research

Cambridge, UK
minka@microsoft.com

Yordan Zaykov
Microsoft Research

Cambridge, UK
yordanz@microsoft.com

Vijay Narayanan
Microsoft

Mountain View, CA
vkn@microsoft.com

Abstract

In this paper, we consider learning a Bayesian collaborative filtering model on a shared
cluster of commodity machines. Two main challenges arise: (1) How can we parallelize
and distribute Bayesian collaborative filtering? (2) How can our distributed inference
system handle elasticity events common in a shared, resource managed cluster, includ-
ing resource ramp-up, preemption, and stragglers? To parallelize Bayesian inference,
we adapt ideas from both matrix factorization partitioning schemes used with stochastic
gradient descent and stale synchronous programming used with parameter servers. To
handle elasticity events we offer a generalization of previous partitioning schemes that
gives increased flexibility during system disruptions. We additionally describe two new
scheduling algorithms to dynamically route work at runtime. In our experiments, we com-
pare the effectiveness of both scheduling algorithms and demonstrate their robustness to
system failure.

1 Introduction

How can we efficiently learn a Bayesian collaborative filtering model in a commodity, shared cluster? Col-
laborative filtering models for recommendation have found many applications across industry and academia,
with Bayesian collaborative filtering models recently showing improved performance. However, in order to
make such models useful, we need to be able to scale the inference of the models to Big Data and to be able
to run our inference algorithms in the shared, commodity clusters used in practice.

Shared clusters, either in the form of a public or private cloud, are increasingly common. They enable true
multi-tenancy: not only are the resources shared between users, they are also utilized by many different
applications such as relational processing, graph analytics or, relevant here, machine learning. By running
many applications on the same infrastructure, cluster administrators aim to maximize the utilization of clus-
ter resources, and thus maximize the value of the cluster. Resource Managers are tasked with this challenge;
systems like Apache YARN [5], Apache Mesos [8], Facebook Corona or Google Omega facilitate job ad-
mission and resource allocation. Individual applications lease containers from the Resource Managers, a
fraction of memory and CPU cores of a machine.

In order to achieve the high utilization of the cluster as a whole, individual applications are faced with
resource elasticity, the two main forms of which are preemption and ramp-up. When the cluster is under
resource pressure, the resource manager may choose to revoke access to individual containers in order
to re-assign the containers to higher-priority applications; this is called preemption. Depending on the
sophistication of the preempted application, this can be treated just like a container failure or in more
intelligent ways. On a well utilized cluster, a large resource request is unlikely to be satisfied immediately.

1

Instead, the resource manager satisfies it incrementally as resources become available, called ramp-up. If
the application can’t make use of these partial allocations, the utilization of the cluster suffers.

When building machine learning systems for use on resource managed clusters, these issues need to be
addressed. Obviously, they can be dealt with by the underlying distributed runtime like Spark [18] or
Pregel [12]. By design, these systems hide these elasticity events from the machine learning code by dealing
with them in a generic way, often incuring a high cost in the form of increased use of stable storage. As we
shall show below, such a fiction isn’t always necessary if we can derive algorithms that accept the underlying
challenges.

While much of the research in distributed machine learning has assumed a constant number of machines
or relied on the underlying system to hide the elasticity events, such approaches are less efficient when run
in real-world shared clusters. In this paper, we explore another approach by devising a machine learning
algorithm that reacts to these elasticity events directly, without requiring the underlying runtime to hide
them. In taking this approach to Bayesian collaborative filtering, we must solve a number of new challenges.
In this paper, we offer the following contributions:

1. A generalization of previous partitioning schemes that enables flexible scheduling of blocks under
different system constraints, such as elasticity, stragglers, and network latency. It also enables
pipelining of the inference in containers and dynamic scheduling of work.

2. Two new scheduling algorithms for work allocation under variable system resources. Both schedul-
ing algorithms gracefully handle variable numbers of machines and load balance work allocation
in the face of slower machines.

3. We use this partitioning scheme and scheduling algorithm for Bayesian collaborative filtering.

2 Related Work

2.1 Big Data Processing

Distributed file systems like the Hadoop Distributed Filesystem (HDFS) [5] have made it economical to
store large quantities of data for extended periods of time. Variants of MapReduce [4, 16] are often used
to analyze this data, and the value derived from it accelerated the overall trend of keeping ever increasing
amounts of data with the expectation of eventual value extraction. But MapReduce is not well suited to
iterative computations. In response, a number of alternative frameworks have been developed [18], some
with fundamentally different programming models [11, 12].

These frameworks are popular in large part because they hide the true chaotic nature of the distributed
system. In order to create this fiction, they incur various overheads. For example, they anticipate stragglers
and mitigate their impact on execution times via speculative execution: some work is done several times
on different containers, which allows the framework to use the results from the first container to complete
them. Similarly, elasticity in all its forms (preemption, ramp-up, failures) is anticipated by frequently storing
intermediate results to stable storage and rolling back computations to ensure sequential consistency. We
show that such effort isn’t always necessary for machine learning computations.

2.2 Distributed machine learning

Machine learning computations often involve numerical operations that iterate until convergence. These
algorithms are naturally tolerant of faults and communication delays, so we do not need to hide these
characteristics of the distributed system. Common algorithms fall into three types: fixed-point algorithms,
stochastic approximators (including SGD), and Markov chain Monte Carlo (MCMC). A fixed-point algo-
rithm is defined as having a unique deterministic update for each variable, which are executed in a round-
robin fashion. Fixed-point algorithms include belief propagation, expectation propagation, batch gradient
descent, and coordinate descent (which itself includes k-means, expectation maximization, alternating least
squares, and variational Bayes). When implementing such algorithms, it is not enough to maximize the
number of updates processed per CPU hour—you also have to consider the impact on convergence rate and
accuracy of the algorithm.

In all three types of algorithm, we have a choice in how to sequentially order the updates. Some of these
orderings will have faster convergence rate than others. Some orderings will also have more natural paral-
lelism arising from consecutive updates that have no dependencies on each other. Running such updates in
parallel has no effect on the convergence rate or accuracy of the algorithm. Sometimes the orderings with

2

high convergence rate are also parallel, but sometimes they are not. For example, the update order used by
the alternating least squares algorithm for matrix factorization has high parallelism and fast convergence
rate. Similarly, the DSGD algorithm [6] orders the SGD updates to provide high parallelism. However, this
ordering slows down the convergence rate, so DSGD only beats a sequential implementation when there
are sufficiently many threads. GraphLab [11] automatically constructs a sequentially consistent schedule to
maximize parallelism.

In cases where there isn’t enough natural parallelism, or the orderings with natural parallelism have too
low convergence rate, we can run updates in parallel even when they have dependencies [1, 9]. This means
that some updates will be using stale values of the variables, so the algorithm will not be equivalent to any
sequential ordering. This does not affect the accuracy of a fixed-point algorithm (it doesn’t change the set of
fixed points) or stochastic approximation (as long as the step size is changed appropriately [10]), but it does
affect the accuracy of MCMC, since the stationary distribution will change. Stale values can significantly
slow convergence if we are not careful. For example, consider the fixed-point system (x = f(y), y =
g(x)). If we run both updates in parallel, we can do twice as many updates per second as a sequential
implementation, but the convergence rate will be exactly halved, so in the end we achieve nothing.

Another approach to increase the amount of parallelism, as well as achieve load balancing, is to use an unfair
schedule, where some updates are done more often than others. This is explicitly prevented in DSGD, but
allowed in NOMAD [17] and FPSGD [19]. Fairness does not affect the accuracy of a fixed-point algorithm
or MCMC, but it does affect the accuracy of stochastic approximation, since it changes the distribution
of data seen by the algorithm. Since NOMAD uses SGD with an unfair schedule, the answer it gives
depends on how many updates happen to be done by each worker. Unfairness can also negatively affect
convergence rate. A simple example is if we update a variable (without a self-loop) in a fixed-point system,
and then immediately update that variable again. Because the updates are deterministic, the same values are
computed both times. A good schedule should avoid this sort of wheel spinning.

The distributed algorithm presented in this paper is based on a fixed-point algorithm (expectation propaga-
tion) and combines all of these techniques to achieve maximum parallelism.

3 Parallel Bayesian Collaborative Filtering

3.1 The Matchbox model

In this paper we set out to perform fast, scalable, distributed inference of collaborative filtering models.
Unlike most of the previous work in scalable collaborative filtering, we focus on Bayesian collaborative
filtering models, such as Matchbox [15], TrueSkill [7], Bayesian Probabilistic Matrix Factorization [14],
CoBaFi [2]. All of the above graphical models attempt to decompose a matrix into its latent factors.

We begin by giving a high-level description of the Matchbox model, which we will use for our explanation
and testing; a more detail description of the model can be found in [15]. The model considers a dataset of
N users, M movies, and R ratings with discrete values ranging from 1 to L; we can consider this dataset
to be a sparse N ×M matrix X where xi,j is the rating by user i of movie j. In the simplest version of the
model, each user i has a vector ui of latent traits and a vector ti of thresholds, each movie j has a vector
of traits vj , and all of these latent variables have Gaussian priors. A rating is assumed to have come from a
real-valued affinity ai,j = 〈ui,vj〉+ noise that was turned into a rating via the smallest index x such that
ti,x > ai,j .

This defines a probabilistic model of user ratings, but not how to do infer the latent traits from data. To do
that, we apply the expectation propagation (EP) algorithm. In this algorithm, each observed rating sends a
message (in the form of a Gaussian distribution) to each parameter involved in generating that rating. These
messages form a fixed-point system that needs to be iterated until convergence.

3.2 Partitioned Bayesian inference

The fixed-point updates in EP exhibit natural parallelism, since the updates involving an observed rating
xi,j have no interaction with the updates for xi′,j′ where i 6= i′ and j 6= j′. To exploit this, we partition
our N users and M movies into K sets, inducing a partition of the ratings matrix into K ×K blocks. As
in DSGD [6], the blocks can be grouped into strata of size K, where no two blocks share the same users or
movies. This allows us to run updates on each block within a stratum simultaneously without interference.

When running inference on a block, we need the data for that block, the current posterior distributions for the
corresponding latent variables, and the most recent messages going into those variables. This information is

3

enough to continue the algorithm just as though we were following a serial schedule. Therefore, the general
process for each block is to (1) load the data and distributions relevant to the block; (2) run an iteration of
Bayesian inference on the block; (3) save the updated distributions for use later.

3.3 Asynchronously merging shared parameters

The above algorithm can handle models where the entire latent parameter space can be partitioned. How-
ever, in many Bayesian models, there is a set of parameters that cannot be partitioned. In collaborative
filtering, this arises when we want to make use of metadata associated with users and items. In the Match-
box model, such metadata is incorporated into the affinity via an additional set of parameters, shared across
all users and items. (Suppose each item also has a vector of metadata fj . This is incorporated into the
rating model by adding 〈ui,Wfj〉 to the affinity, where W is a matrix of shared parameters.) Since these
parameters are involved in generating every rating, updates performed on any block of the data matrix affect
all other blocks.

To achieve parallelism in this situation, we must allow some updates to use stale values of the shared
parameters. In EP, these updates correspond to multiplication of distributions, which is an associative and
commutative operation. Thus we follow the approach of [1, 9] and allow workers to update their own local
copy of the shared parameters. When a block is completed, these updates are batched up and sent to a
central parameter server, where they can be applied in any order. Because our shared parameter space is
small relative to the size of the data and total parameter space, we store the shared parameters in a single
machine and we do not impose a bound on staleness. Whenever a new block is to be processed, the most
recent version of the shared parameters is obtained from the server.

4 System Design

The target environment is a resource managed, shared cluster (or: cloud). It exposes computational re-
sources in the form of containers which are fractions of machines. In this environment, it is natural to
execute the system by assigning blocks to a set of worker containers according to some scheduling policy.
The computing environment provides the following constraints when defining the partitioning and schedul-
ing policies:

Scale: The system is composed of multiple containers that do not share memory. Hence, we need to pay
special attention to the cost and latency of communication between containers.

Fault tolerance: Containers may fail without warning due to a local hardware failure or a communications
failure.

Elasticity: The resource manager may request the system to vacate some of the containers. This is different
from a failure since there is prior warning.

Ramp-Up: Requested resources may become available a few containers at a time. The time for all requested
containers to become available may be a significant fraction of the effective compute time of the job.

Stragglers: Some containers may be temporarily or even permanently slower than other containers. Like
failure, this behavior is often induced by local hardware or software issues of the machine that hosts the
container.

This section describes how to address these challenges within the machine learning algorithm, via an ap-
propriate policy for partitioning and scheduling.

4.1 Little blocks for asynchronous, pipelined processing

Partitioning For our partitioning, we assume that during computation we will use at most p containers
during inference. We start with a data matrix X of size N by M , and we will partition the rows into kN
clusters and the columns into kM clusters resulting in kNkM blocks. (For simplicity, we assume kN and
kM evenly divide N and M respectively.) Setting kN = kM = p results in the partitioning scheme of
DSGD [6]; kN = kM = p+1 results in the partitioning scheme of FPSGD [19]; and kN = p and kM = qp
for some large integer q results in the partitioning scheme of NOMAD [17]. The additional blocks allow
asynchronous processing.

Here, we set kN ≥ `p + 1, where ` is an integer representing the average number of rows of blocks each
container would be assigned if all p containers were being used. Additionally, we set kM ≥ qp + 1 where

4

Input: blockID to process
Load data for blockID from distributed disk: load data and relevant parameter space;
Run one EP iteration on blockID;
Save updated parameters to distributed disk and then notify the master that blockID was processed;

Algorithm 1: High level algorithm run by worker containers when receiving a block to process.

(a) Simple scheduling (b) Locality-aware scheduling

Figure 1: Above we give examples of B = 3 block allocations to p = 5 workers (designated by each color)
under both the simple scheduler and locality-aware scheduler. (a) For the simple scheduler we see that all
blocks allocated are independent and there is a free row and column for when a container finishes one of
its blocks. (b) For the locality-aware scheduler we see each container receives more than one block per row
and per column, allowing for larger blocks for the same values of B and p.

q is an integer loosely representing the queue length such that each container can pipeline their blocks. In
practice we will always set q > 1 and ` > 1 so that we can achieve all of the necessary features.

Block processing Each worker container is continually allocated blocks to process. The algorithm run
by each worker container is shown in Algorithm 1. We use Infer.NET [13], a probabilistic programming
language that compiles to an expectation propagation (EP) algorithm, to run updates on our model. The
compiled algorithm from Infer.NET offers an API to load data and parameters into the model, run a single
iteration of EP, and save the updated parameters, enabling us to implement Algorithm 1.

Pipelining For collaborative filtering models, and especially for complex graphical models, there is a
sizable parameter space along with the data that must be loaded and subsequently saved when processing
each block. By setting q > 1 or ` > 1 we are able to schedule multiple blocks at a time to each container.

Because each container can lock multiple blocks at once, they can pipeline their work. In particular, we
create a thread in the container for each of the three steps in Algorithm 1. Each thread has a queue of blocks
to process, runs its step and passes the block to the appropriate queue for the next thread. The result is that
we have two threads primarily performing network communication and a third performing CPU intensive
updates. Our goal is that each container is always running updates on a block and to make this possible we
need to carefully tune the pipeline.

4.2 Centralized dynamic block scheduling

The partitioning scheme above offers great flexibility but does not specify how to efficiently take advantage
of the parallelism. Unlike previous work, we do not assume there is a fixed schedule. Rather, we have a
centralized master container that keeps track of all locks and dynamically allocates blocks to containers as
it feels appropriate. As we show below, there are numerous design decisions in making a dynamic block
schedule for collaborative filtering, and we believe this opens the door to further research toward improved
efficiency. Here, we describe a simple dynamic block scheduler, similar to that offered in [19], and a
second locality-aware scheduling heuristic. In both algorithms, we would like there to be at most B blocks
allocated to each container at a given time. The master keeps a queue of blocks that need to be processed,
ordered following the DSGD [6] schedule; we allocate blocks from the first f blocks at the front of the
queue following the algorithms below.

5

Input: CID: ID of container needing a new block
initialize blockID to NULL;
Set blockID to a free block from a row that has not yet been assigned to another CID; if none keep NULL;
if (blockID = NULL) Set blockID to any available block from the rows and columns already locked by CID;
if none keep NULL;
if (blockID = NULL) Set blockID to any available block from the rows already locked by CID, prioritizing
rows that have had fewer blocks processed; if none keep NULL;
if (blockID = NULL) Soft steal row from a container that have multiple rows that are significantly behind
the rows allocated to CID; if none keep NULL;
if blockID is not NULL then

Lock the row and column of the block.
end
Output: blockID

Algorithm 2: Locality-aware block scheduler

Simple scheduling Following [19], we take advantage of the fact that as long as there is at least one
additional unlocked row and column at any given moment we can allocate a new block to an available
container. Therefore, we set q = ` = B and set kN = `p + 1 and kM = qp + 1. Doing this, as seen in
Figure 1(a), we can allocate B blocks to each container and still always have an unlocked row and column.
As a result, whenever a container finishes processing a block, the scheduler will unlock the row and column
from the previous block and the container will be allocated a new block from the previously unlocked row
or column.

Locality-aware scheduling While the above scheduling algorithm works well, it suffers from two key
issues. First, all blocks in a container’s pipeline are independent and containers often do not get blocks from
the same row or column as they had recently used, resulting in increased time necessary to read remote
parameters. Second, the schedule wastes available parallelism, resulting in the size of blocks dropping
quadratically when the number of blocks allocated to each container, B, increases linearly.

To address these issues, we observe that while a container has a row and column locked, other blocks in
that row or column could be added to that container’s pipeline without breaking the lock, as seen in Figure
1(b). For the sake of simplicity, we consider that each container is allocated a set of row partitions and
are primarily allocating blocks from those rows. As such, we set ` to the number of rows we want each
container to be allocated and q ≥ B/`. We then follow the algorithm listed in Algorithm 2 to select which
block should be allocated next to a particular container. There we refer to “soft-stealing” a row; this is a
mechanism for load balancing. If there are no blocks that can be allocated to a given container CIDfast,
since we only look ahead f blocks in the scheduling queue, and there is another container CIDstraggler

straggling significantly behind the free container, then we set one of the rows from the CIDstraggler to be
locked by CIDfast. As a result, CIDstraggler will in the future be responsible for processing blocks from
one less row and CIDfast can take on blocks from an additional row once CIDstraggler has finished those
blocks it is already processing.

In both scheduling algorithms above, we are able to achieve pipelined, asynchronous processing of blocks.
While the second, dynamic algorithm offers some improvements over the first, it comes at the cost of
added complexity. Given it is generally governed by heuristics, we believe additional research can unearth
improved dynamic scheduling algorithms for the given partition scheme. We hope the proposed partitioning
perspective opens the door for other researchers to explore this space.

4.3 Elasticity and fault tolerance

The above partitioning scheme and scheduling algorithm inherently handle elastic resource availability. Be-
cause no worker container knows of the others’ activities, they can merely operate on the blocks assigned
to them. When a container becomes available, the master allocates the next available block to it, “stealing”
a row if necessary. If a container fails, the previous values of parameters are still stored on the distributed
filesystem, blocks that were previously being processed by the container are inserted at the front of the
scheduling queue, and any locks associated with that container are released. This enables the implemen-
tation to run inference with a variable number of containers and smoothly handle resource availability and
machine failure.

6

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

 0 5 10 15 20 25 30

U
p
d
a
te

s
/s

e
c
o
n
d

Number of Containers

kN=kM=10
kN=kM=25

kN=kM=50
kN=kM=100

(a) Block size

 0

 20000

 40000

 60000

 80000

 100000

 2 4 6 8 10 12 14 16 18 20

U
p
d
a
te

s
/s

e
c
o
n
d
 (

w
a
ll-

c
lo

c
k
)

Number of Containers

Simple
Locality-Aware

(b) Scheduling

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600

U
p
d
a
te

s
/s

e
c
o
n
d
 (

w
a
ll-

c
lo

c
k
)

Number of Failed Processes

(c) Elasticity

Figure 2: We test the performance of our system across a variety of settings. (a) We observe that larger
blocks are faster to process but smaller blocks offer more parallelism. (b) We observe that both scheduling
algorithms scale linearly to additional containers, with the locality-aware scheduler being able to more
efficiently use higher numbers of containers. (c) Our system is highly fault tolerant, with many container
failures causing only a slight decrease in performance.

5 Experiments

5.1 Experimental Setup

We begin by explaining how we implemented the above algorithms and how we have tested them.

Implementation Our system is built on top of REEF, the retainable evaluator execution framework [3].
REEF allocates a master container, called the driver, which is notified of all elasticity events including
newly allocated containers, preempted containers, and failed processes in containers. Within each worker
container we run Algorithm 1 and communicate progress directly to the master container. As mentioned
before, the expectation propagation algorithm for the Matchbox model is generated by Infer.NET.

Cluster environment All experiments, unless specified otherwise, are run on an HDInsight1 cluster with
3GB of main memory per container. We use a distributed file system, in this case Azure Storage, to save
and communicate data and parameters.

Data Generation To provide a flexible testing framework, all of our data is generated by Infer.NET using
the Matchbox generative model with randomly initialized parameters. For each test we specify the number
of users N , number of movies M , number of ratings R, and number of partitions kN , kM . This enables us
to test the success of our system under different constraints and work loads. Unless noted otherwise, we set
N = 500000, M = 20000, R = 1000000000, B = 3 and use the simple scheduler. To test performance of
our system under different constraints, we track the number of updates completed per second (wall-clock
time) for two iterations (two complete passes over the data).

5.2 Machine scalability

The most important aspect we wanted to test was scalability. To do this, we first look at how well we can
scale by adding additional containers to a problem of constant size. Even for a constant size problem, there
are two free variables that we test: block size and scheduling algorithm.

To test the effect of block size, we vary kN and kM from 10 to 100 and observe the performance for different
numbers of containers using the simple scheduler. (Note, this experiment was run on a private cloud at
Microsoft running Hadoop YARN, HDFS and faster containers than HDInsight used in other experiments.)
As can be seen in Figure 2(a), we find that for a set block size, our system scales linearly in the resources
available. Additionally, we find that large blocks are faster to process, although of course they offer less
parallelism than many small blocks. As a result, like all partitioning-based parallel matrix factorization
methods, this trade-off results in an optimal block size given the number of available containers.

As noted previously, while the partitioning scheme offers the parallelism, it is up to the scheduling algorithm
to exploit it. As a result, to maximally use the resources available, we compare the ability of each scheduling
algorithm to use additional containers. In this experiment, we set kN = kM = 30 and B = 3. As a result,

1We used HDInsight version 3.1, http://azure.microsoft.com/en-us/services/hdinsight/

7

http://azure.microsoft.com/en-us/services/hdinsight/

the simple scheduler works optimally (non-blocking and fully pipelined) for up to 9 containers. However,
the locality-aware scheduler can maintain the full pipelining for up to 14 containers. As we see in Figure
2(b), the locality-aware scheduler continues to scale linearly to 14 containers, using additional containers
just as efficiently as when there is less contention for blocks. For even greater numbers of containers, we
observe that the locality-aware scheduler continues to scale better than the simple scheduler, which cannot
as effectively make use of additional resources. This experiment is also reassuring that although the locality-
aware scheduling is more complex, the complexity does not result in any overhead or loss of performance
when applied to simpler situations, i.e. far fewer containers and many blocks.

5.3 Elasticity Events

To test the ability of our system to handle elasticity events, we cause our program in each worker container
to fail with probability P whenever a block is allocated to it; when the program fails, REEF notifies the
master container and the system quickly starts a new instance of the runtime in the container. We vary
P ∈ {0, 0.01, 0.05, 0.1, 0.2} and observe the change in performance of the system. Note that, because
upon program failure the blocks that were previously being processed have to be reallocated, we see that
the number of container failures grows faster than P , the probability of failure with each block allocation.

As can be seen in Figure 2(c), the system performance degrades at a much slower rate than the increased
rate of failures. This demonstrates that not only can the system handle preemption and failures, but such
events, even in large quantities, do not significantly hurt performance. As explained before, this result is in
contrast to systems that either have to start the entire job over or duplicate work across multiple machines.

Discussion These preliminary experiments offer a number of conclusions and provide further questions
that we plan to explore. From Figure 2(c), it is clear that our system successfully handles elasticity events
with marginal impact on performance. Our test comparing the two scheduling algorithms in Figure 2(b)
shows that the dynamic, locality-aware scheduling can improve the scalability of partitioning based systems
Last, Figure 2(a) demonstrates that the question of how to set the block size appropriately is valuable for
optimizing performance. We plan to investigate these questions further and run additional experiments in
the coming months.

6 Conclusion

Above, we consider the problem of learning Bayesian Matrix Factorization models on shared, resource
managed clusters. Different from the literature on distributed machine learning, we accept the challenge of
that system environment as one of the machine learning algorithm, not the underlying runtime. Namely, we
pay attention to resource elasticity events such as stragglers, preemption and ramp-up.

In the experiments we have seen that our system scales well to additional resources, and the locality-aware
scheduling helps to push the scalability further. Additionally, our efforts to handle elasticity events directly
lets our system quickly recover from significant failures without significantly hurting performance.

In the future, we plan on expanding this work in several dimensions. For one, we will perform more
experiments on much larger clusters and datasets. Further, we plan to perform a more in-depth analysis of
the proposed scheduling algorithm as well as partitioning scheme for convergence rates. Lastly, we will
expand the approach presented to additional models.

8

References

[1] A. Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and A. J. Smola. Scalable
inference in latent variable models. In Proceedings of The 5th ACM International Conference on Web
Search and Data Mining (WSDM), 2012.

[2] Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J Smola. CoBaFi: collaborative
bayesian filtering. In Proceedings of the 23rd international conference on World wide web, pages
97–108. International World Wide Web Conferences Steering Committee, 2014.

[3] Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Sergiy Matusevych, Brandon Myers,
Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao, Josh Rosen, et al. Reef: Retainable
evaluator execution framework. Proceedings of the VLDB Endowment, 6(12):1370–1373, 2013.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. CACM,
51(1):107–113, 2008.

[5] The Apache Software Foundation. Apache Hadoop, 2009. http://hadoop.apache.org/core/.
[6] R. Gemulla, E. Nijkamp, P.J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed

stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 69–77. ACM, 2011.

[7] Ralf Herbrich, Tom Minka, and Thore Graepel. TrueskillTM: A Bayesian skill ranking system. In
NIPS, 2007.

[8] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy Katz,
Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the data center.
In Proceedings of the 8th USENIX conference on Networked systems design and implementation,
pages 22–22, 2011.

[9] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gibson, G. Ganger, and E. Xing. More effective
distributed ml via a stale synchronous parallel parameter server. In NIPS, 2013.

[10] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Neural Information Processing
Systems, 2009.

[11] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. GraphLab: A new parallel framework for machine learning. In Conference on Uncertainty in
Artificial Intelligence, 2010.

[12] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In A. K. Elmagarmid and D. Agrawal, editors,
ACM SIGMOD International Conference on Management of Data, pages 135–146. ACM, 2010.

[13] Tom Minka, John Winn, John Guiver, and David Knowles. Infer.NET 2.5, Microsoft Research Cam-
bridge, 2012.

[14] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proceedings of the 25th international conference on Machine learning, pages
880–887. ACM, 2008.

[15] David H Stern, Ralf Herbrich, and Thore Graepel. Matchbox: large scale online bayesian recom-
mendations. In Proceedings of the 18th international conference on World wide web, pages 111–120.
ACM, 2009.

[16] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey. Dryadlinq: A system
for general-purpose distributed data-parallel computing using a high-level language. In Proceedings
of the 8th USENIX conference on Operating systems design and implementation, pages 1–14, 2008.

[17] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, SVN Vishwanathan, and Inderjit Dhillon. Nomad: Non-
locking, stochastic multi-machine algorithm for asynchronous and decentralized matrix completion.
arXiv preprint arXiv:1312.0193, 2013.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI, April 2012.

[19] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Conference on Recommender
Systems, pages 249–256. ACM, 2013.

9

	Introduction
	Related Work
	Big Data Processing
	Distributed machine learning

	Parallel Bayesian Collaborative Filtering
	The Matchbox model
	Partitioned Bayesian inference
	Asynchronously merging shared parameters

	System Design
	Little blocks for asynchronous, pipelined processing
	Centralized dynamic block scheduling
	Elasticity and fault tolerance

	Experiments
	Experimental Setup
	Machine scalability
	Elasticity Events

	Conclusion

