
Towards Resource-Elastic Machine Learning

Shravan Narayanamurthy, Markus Weimer, Dhruv Mahajan
Tyson Condie, Sundararajan Sellamanickam, Keerthi Selvaraj

Microsoft
[shravan|mweimer|dhrumaha|tcondie|ssrajan|keerthi]@microsoft.com

1 Introduction

The availability of powerful distributed data platforms and the widespread success of Machine
Learning (ML) has led to a virtuous cycle wherein organizations are investing in gathering a wider
range of (even bigger!) datasets and addressing an even broader range of tasks. The Hadoop Dis-
tributed File System (HDFS) is being provisioned to capture and durably store these datasets. Along
side HDFS, resource managers like Mesos [10], Corona [8] and YARN [16] enable the allocation of
compute resources “near the data,” where frameworks like REEF [3] can cache it and support fast
iterative computations. Unfortunately, most ML algorithms are not tuned to operate on these new
cloud platforms, where two new challenges arise: 1) scale-up: the need to acquire more resources
dedicated to a particular algorithm, and 2) scale-down: the need to react to resource preemption.
This paper focuses on the scale-down challenge, since it poses the most stringent requirement for
executing on cloud platforms like YARN, which reserves the right to preempt compute resources
dedicated to a job (tenant) [16].

YARN exposes compute resources (called containers) through a central Resource Manager (RM).
The RM mediates container requests from multiple tenants that want to execute some form of a
job i.e., MapReduce, Pregel, SQL, Machine Learning. YARN assigns containers according to some
policy that is typically based on fairness, priority or monetary compensation. These local policies are
used to derive a global scheduling decision among multiple tenants that ensures each tenant is given
a satisfactory container allocation, and that (ideally) cluster utilization is kept high. The challenge
is satisfying these global properties as new tenants enter and leave the system. The key mechanism
for achieving this goal is preemption [7, 16], which allows the RM to recall (preempt) previously
assigned containers so that they may be given to another tenant that improves Pareto optimality.

Jobs need to react to these preemption requests. Trivially, preemption can be viewed as a
(task/container) failure, which systems such as Hadoop MapReduce [1] can well accommodate
through aggressive task check-pointing and restart. However, such levels of check-pointing have
been frequently found to be detrimental to the performance of jobs that are (somewhat) immune to
such fine-grained failures e.g., small/short jobs as well as Machine Learning systems that blatantly
sacrifice fault tolerance for the sake of performance [4, 17, 14, 5]. These systems rely on restarting
the whole computation on a failure, requiring the user to execute several attempts of an ML job until
one of them succeeds. Unfortunately, this strategy is bound to fail in the presence of preemption,
which is likely to be more common than faults; especially in a system under heavy load; making it
unlikely to ever complete a job that employs such a restart strategy.

In this abstract, we present our initial findings in integrating resource elasticity as a first-class citizen
into ML algorithms. We present a resource-elastic linear learning algorithm as a stand-in for statisti-
cal query model (SQM) [11] algorithms in Section 2. It assumes random partitioning of the data onto
containers; giving up a container therefore is equivalent to drawing a random sample of the whole
dataset. We assume that we can choose when to give up a container within some bounded time, such
is the case for YARN [2]. In Section 3 we then describe initial results on our implementation on
REEF [3]. Section 4 offers our plans for future work.

1

2 Resource Elastic Linear Learning

We consider the following convex objective function,

f(w;X,Y) =
∑
p

lp(wtXp, Yp) +
λ

2
wtw, (1)

where lp,{Xp, Yp} are part of loss function and data respectively in partition p. For ease of exposi-
tion, we use the distributed Batch Gradient Descent Algorithm 1 here to optimize Equation 1 in lieu
of other well known methods like SGD [6], LBFGS [13] and Trust Region Newton [12].

Algorithm 1: Distributed Batch Gradient Descent (Distr-BGD)
Master: Choose w0;
for r = 0, 1 . . . do

1. Master: Broadcast wr to all the slaves.;
2. Partition p: Receive wr and compute partial gradient grp = ∇lp at wr;
3. Partition p: Perform Reduce operation on grp.;
4. Master: Receive the output, gr =

∑
p g

r
p of the reduce operation.;

5. Master: Update the weight vector, wr+1 = wr − ηr(gr + λwr).;
end

The master first passes on model wr to all the slave nodes using a Broadcast operation. The slave
partitions then compute the partial gradients grp and perform the Reduce operation to aggregate
them with the master as the root node. The master then receives the overall gradient and updates
wr. The step ηr is either a constant or decays with time. Alternatively, one can also do a line search.
This relies on two main communication operators: Broadcast and Reduce. The readers are
referred to [15] for the details of these operators. In this paper, we use a simple binary tree as in [4]
to implement them.

Elasticity Model: We make the following assumptions: 1) Container removal can occur at any step
of the algorithm, 2) It occurs due to preemption or failure of nodes themselves rather than issues
with the algorithm implementation or data, 3) At some future time we are guaranteed to get the
containers back, and 4) Only leaf nodes in the binary tree vanish1.

Our Approach: Let us say, during iteration r the partitions with indices in setQ disappear. We react
to this on two levels: 1) We make the Broadcast and Reduce elastic, and 2) We approximate
the loss function on the missing partitions and use this information in the overall optimization.

Elastic Broadcast and Reduce: Elastic Broadcast means that all the active slave containers
in Q̄ will still receive the broadcast from the master. Similarly, the output of Reduce will return
the aggregated result of active containers only.

Approximation for vanished partitions: We approximate the sum of loss functions lQ =
∑

p∈Q lp

by first order Taylor expansion, l̂Q = ĝTQ(w − wr−1), where ĝQ =
∑

q∈Q g
r−1
q . The master uses

this approximation in rth and subsequent iterations till the partitions come up again. This has two
advantages: 1) The quality of our solution will be better because we do not ignore the vanished
nodes completely, and b) We do not have to wait for the partitions to return.

Computing ĝQ: Once the Master observes that partitions have vanished, it broadcasts wr−1 to slave
partitions and gets gr−1

Q̄
with the Reduce operation. It then calculates ĝQ = gr−1 − gr−1

Q̄
. Note

that the master needs to store the previous gradient gr−1 only. If extra partitions vanish during the
reduce operation, the master will compute the approximation of all vanished partitions together.

Algorithm 2 contains this approach. FN denotes the set of partitions vanished so far in the algo-
rithm. The master maintains a FIFO queue that stores Q as well as approximation ĝQ of vanished
partitions in a given iteration. The variable ĝFN maintains the aggregated approximate gradient i.e.

1This last assumption is made for the sake of ease of exposition only.

2

ĝFN =
∑

q∈FN ĝq . The master reschedules the partitions in the FIFO queue as new containers
become available and updates ĝFN and queue.

Although theoretically possible, failures or preemption don’t occur in every iteration of the algo-
rithm in practice. A proper analysis and modeling of the interval between the consecutive resource
allocation changes and formal proof of convergence of the algorithm2 is left for future work.

Algorithm 2: Elastic Distr-BGD
begin

1.Master: FNQueue←− ∅; // initialize vanished partition queue to empty
2 Master: FN ←− ∅; // initialize set of vanished partitions to empty
3.Master: ĝFN ←− 0;

4. Master: Choose w0;
for r = 0, 1 . . . do

5. Master: Broadcast wr to all the slaves;
6. Partition p: Receive wr and compute partial gradient grp = ∇lp at wr;
7. Partition p: Perform Reduce operation on grp;
8. Master: Receive gr =

∑
p g

r
p and Q from the Reduce operation.; // Q is set of

vanished partitions
Master: if Q 6= ∅// check if some partition has vanished then

9. Master: Broadcast wr−1 to all the slaves.;
10. Partition p: Receive wr−1 and compute partial gradient gr−1

p = ∇lp at wr−1;
11. Partition p: Perform Reduce operation on gr−1

p .;
12. Master: Receive gr−1

Q̄
=

∑
p g

r
p and Q from the Reduce operation.; // Q also

includes vanished partitions from previous reduce in Step 8

13. Master: ĝQ ←− gr−1 − gr−1
Q̄

;
14. Master: ĝFN ←− ĝFN + ĝQ, FN ←− FN ∪Q;
15. Master: FNQueue.Add(Q, ĝQ).; // Add approximated gradient and set
of faulty nodes to queue
16. Master: wr+1 ←− wr , wr ←− wr−1

end
else

17. Master: wr+1 ←− wr − ηr(gr + ĝFN + λwr);
end
18. Master(Q, ĝQ)←− FNQueue.top;
Master:if number of free nodes available ≥ |Q| then

19. Master: FNQueue.pop;
20. Master: Request to bring the partitions with indices in Q up;
21. Master: ĝFN ←− ĝFN − ĝQ, FN ←− FN −Q;

end
end

end

3 Experimental Results

Implementation: We implemented Algorithm 2 on REEF [3], which offers event-driven abstrac-
tions on top of resource managers. Crucially, it provides events for container (de-)allocation, which
then trigger reconfiguration of our elastic Broadcast and Reduce operators. The latter is imple-
mented as a binary tree whose inner nodes keep an approximation for their inputs available, which
facilitates seamless container deallocations. Our Reduce function also returns the set of active par-
titions Q̄ to the master, which enables the elasticity treatment in Algorithm 2. Moreover, we perform
line search in Algorithms 1 and 2 to find the step ηr.

Dataset: We use a subset of 4 million examples of the splice dataset described in [4]. The raw data
consists of strings of length 141 with 4 (A, T,C,G) alphabets. The train and test sizes are 3.6M
and 400K respectively. We derive the binary presence or absence of n− grams at specific locations

2Convergence proof will require modifying the algorithm to do proper line search (with AGW conditions)
when the node comes up again (Steps 17-19).

3

0 100 200 300
0.1

0.12

0.14

0.16

0.18

0.2

Iterations

O
bj

ec
tiv

e
F

un
ct

io
n

No Failure
Our Approach
Ignore
Stall

(a) Objective Function

0 100 200 300
0.24

0.26

0.28

0.3

0.32

Iterations

A
U

P
R

C

No Failure
Our Approach
Ignore
Stall

(b) AUPRC

Figure 1: Plots showing the preemption scenarios. 7 nodes are taken away at the 100th iteration due
to preemption and are given back again at iteration 200.

of the string with n = [1, 4] as features. The dimensionality of the feature space is 47, 028 and the
overall data size is around 16GB.

Experimental setup: We run our experiments on a 12 core machine with hyper-threading and
96GB RAM. We use P = 14 in all our experiments. We preempt the algorithm by taking away
7(50%) nodes at iteration 100 and giving them back at iteration 200.

Baselines and evaluation criteria: We compare our results with two baselines, a) Stall : Distr-BGD
algorithm waits for all the nodes to come up again, and, b) Ignore: Distr-BGD continues with only
the remaining containers until they become available again. We use training objective function value
and Area under Precision-Recall Curve (AUPRC) on the test set as evaluation metrics.

Observations: Figure 1a shows the objective function value as a function of the number of itera-
tions. Note that both the iterations and overall time taken are directly proportional to each other. Our
method shows considerable improvement over the baselines. Surprisingly, we even do better than
the no failure case. This can be explained by the fact that the use of the past gradient has similarities
to adding the momentum term [9] for gradient descent algorithm which is well known to have a
beneficial effect. Similar observations can be made for AUPRC metric on test data in Figure 1b.
The experiments clearly show the utility of designing fault-aware ML algorithms.

4 Conclusions and Future work

In this abstract, we explored the idea of treating resource elasticity as a first class tenant in machine
learning algorithms. To the best of our knowledge, this is the first time this connection has been
made. Our initial results confirmed that doing so can yield substantial improvements over the state
of the art: Forcing the runtime to absorb the resource elasticity yields high overheads (e.g. in
MapReduce) and treating any container preemption as a job failure wastes compute cycles.

This encouraging result motivated our current and future work in this area: the findings can and
need to be substantiated on larger datasets. We also need to compare against stronger baselines
like, continuing the optimization while ignoring the vanished nodes completely. The insight will
be generalized to other SQM algorithms and graphical models. All of this will move us closer to
predictable and reliable performance of machine learning on the cloud.

4

Acknowledgments

Our implementation makes heavy use of REEF[3], a new distributed computing framework the
authors of the paper are involved in. We’d like to thank our collaborators on that project without
which the present work would not have been possible.

5

References

[1] Hadoop MapReduce. http://hadoop.apache.org/.
[2] Preemption and restart of MapReduce tasks. https://issues.apache.org/jira/

browse/MAPREDUCE-4584.
[3] REEF: The retainable evaluator execution framework. http://www.reef-project.

org.
[4] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford. A reliable effective terascale linear

learning system, 2011.
[5] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in

latent variable models. In WSDM ’12: Proceedings of the fifth ACM international conference
on Web search and data mining, pages 123–132, New York, NY, USA, 2012. ACM.

[6] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Y. Lechevallier
and G. Saporta, editors, Proceedings of the 19th International Conference on Computational
Statistics (COMPSTAT’2010), pages 177–187, Paris, France, Aug. 2010. Springer.

[7] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and P. Lin. Natjam: Design and
evaluation of eviction policies for supporting priorities and deadlines in mapreduce clusters.
October 2013.

[8] Facebook Engineering. Under the Hood: Scheduling MapReduce jobs more efficiently with
Corona, November 2012.

[9] S. Haykin. Neural Networks and Learning Machines (3rd Edition). Prentice Hall, 3 edition,
Nov. 2008.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In Proceed-
ings of the 8th USENIX conference on Networked systems design and implementation, pages
22–22. USENIX Association, 2011.

[11] M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–1006,
Nov. 1998.

[12] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region newton method for logistic regression.
J. Mach. Learn. Res., 9:627–650, June 2008.

[13] D. C. LIU and J. NOCEDAL. On the limited memory BFGS method for large scale optimiza-
tion. Math. Programming, 45(3, (Ser. B)):503–528, 1989.

[14] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. GraphLab:
A New Parallel Framework for Machine Learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), Catalina Island, California, July 2010.

[15] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete Refer-
ence, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised) edition,
1998.

[16] V. Vavilapalli and et. al. Apache hadoop yarn: Yet another resource negotiator. In ACM
Symposium on Cloud Computing, SoCC’13, October 2013.

[17] M. Weimer, S. Rao, and M. Zinkevich. A convenient framework for efficient parallel multipass
algorithms. In LCCC : NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds,
December 2010.

6

http://hadoop.apache.org/
https://issues.apache.org/jira/browse/MAPREDUCE-4584
https://issues.apache.org/jira/browse/MAPREDUCE-4584
http://www.reef-project.org
http://www.reef-project.org

	Introduction
	Resource Elastic Linear Learning
	Experimental Results
	Conclusions and Future work

