Towards Geo-Distributed Machine Learning

Ignacio Cano*%¥ Markus Weimer™ Dhruv Mahajan™
Carlo Curino™ Giovanni Matteo Fumarola™

YUniversity of Washington
icano@cs.washington.edu
"Microsoft
{mweimer, dhrumaha, ccurino, gifuma}@microsoft .com

Abstract

In large organizations, data is “born” in data centers all around the world. Learn-
ing requires a global view of such data. This new class of geo-distributed ma-
chine learning (GDML) applications need to cope with: 1) scarce and expensive
cross-data center bandwidth, and 2) growing privacy concerns that are pushing
for stricter data sovereignty regulations. In this paper, we formalize this prob-
lem, show that the current state-of-the-art lacks proper support for GDML appli-
cations, and propose an initial system and algorithm that perform training in a
geo-distributed fashion. Our empirical evaluation confirms the general validity of
our approach, but many research challenges remain open.

1 Introduction

Modern organizations have a planetary footprint. Data is born where users and systems are located,
all around the globe. On the other hand, many machine learning applications require access to all
the data at once to achieve the best results. For example, fraud prevention benefits tremendously
from the global picture in both finance and communication networks, recommender systems rely
on the maximum breadth of data to overcome cold start problems, and the predictive maintenance
revolution is only possible because it relies on data from all markets. This type of applications form
a new class of learning problems, which we call Geo-Distributed Machine Learning (GDML).

The geographically distributed nature of the data introduces two new fundamental challenges: 1)
cross data center (X-DC) connectivity is scarce, expensive, and less reliable than intra data cen-
ter (in-DC) connectivity, and 2) increasing data sovereignty regulations limit where data can be
stored/processed (e.g., German’s citizen data cannot be stored outside EU).

Recent literature has described similar problems in the context of relational analytics workloads
[1,2], general big-data applications [3]], and streaming systems [4]. To the best of our knowledge,
no previous work has dealt with this geo-distributed problem in iterative/convergence-oriented ap-
plications such as machine learning. Since no practical system supports GDML today, practitioners
resort to centralizing the problem by copying all the data into a single data center, where training is
performed.

In this paper, we show that the novel challenges of GDML render the centralized state-of-the-art
approach too costly in terms of X-DC bandwidth for large datasets, and infeasible when subject to
strict sovereignty constraints. We speculate that both challenges will persist or grow in the future
[3L5]], highlight some of the shortcomings of the current practice, and propose a system that performs
distributed training across data centers without moving raw data.

*This work was done while the author was interning at Microsoft.

Contribution Our system builds upon Apache Hadoop/YARN and Apache REEEF, and is capable
of coordinating learning tasks running in separate data centers to construct a unified model. We
offset the generally communication-intensive nature of machine learning algorithms by employing
and extending communication-sparse ones [6]. Our experimental evaluation indicates that our ap-
proach can outperform the state-of-the-art by several orders of magnitude when measuring X-DC
transfers, as well as respect stricter sovereignty constraints. Finally, we highlight several challenges
that remain open for GDML applications.

2 Problem Formulation

We consider the I5 regularized linear classification problenﬂ We assume a dataset D of IV examples
(w;,y;) where x; € R? denotes the features and y; € {—1,1} denotes the label of example i.
Further, we assume that D is randomly partitioned across P data centers. The portion of the dataset
D hosted by data center p is denoted as D,,.

Let [(w - x;,y;) be a continuously differentiable loss function with Lipschitz continuous gradient,
where w € R? is the weight vector. Let L,(w) = Y, p, L(w - i, y;) be the loss associated with

data center p, and L(w) = 3 L,(w) be the total loss over all data centers. Our goal is to find w
that minimizes the following objective function, which decomposes per data center:

Flw) = S lholl? + Lw) = Jllwll? + Y Ly(on) M
p

where A > 0 is the regularization constant.

We aim to optimize this objective function while keeping the data in place, which poses two inter-
esting challenges: a) we need an algorithm that minimizes X-DC communication, and b) we need a
system that allows such an algorithm to be implemented, especially considering the fault tolerance
and network latency characteristics of such setup.

The strong assumption we made in this problem definition on random partitioning of the data holds
true in some important production use cases we observe. In such cases, load balancing across
data centers forces data to be “randomly” spread across them, independently of the learning task.
However, this is not fully general, as other important GDML workloads require data to be close to
the users (to achieve low latency interactions), thus strong geographically biases emerge. Supporting
this second class of workloads is still an open problem.

3 Algorithm

We need an algorithm capable of minimizing X-DC communication costs. The Terascale method [/7]]
is one of the most representative methods from the statistical query model class (SQM) [8]] and is
considered a state-of-the-art solver. Alternating Direction Method of Multipliers (ADMM) [9,(10]]
is a popular dual method that solves approximate problems in the nodes and iteratively reaches the
full batch solution.

Recently, many communication-efficient algorithms have been proposed that trade-off local com-
putation with communication. CoCoA [11]] represents the class of distributed dual methods that, in
each outer iteration, solve (in parallel) several local dual optimization problems. In this work, we
use the algorithm proposed by Mahajan et al. [[6]] to optimize Equation (I)). Experiments show that
this method performs better than the aforementioned ones, both in terms of communication passes
and running time [6].

The main idea of the algorithm is to trade-off in-DC computation and communication with X-DC
communication. Let w” and ¢g” be the global model and gradient respectively at iteration available
in all data centers. At data center p, this information is used together with the local data D, to
construct an approximation fp of f. To ensure convergence, fp should satisfy a gradient consistency
condition, V fp(wr) = ¢". The function fp is approximately optimized to get the local weight vector
wp, which enables the computation of the direction d,, = w, — w". The global update direction d"

"For ease of exposition, we leave other learning approaches to future work.

Figure 1: Multi-Level Master/Slave Tree

is chosen to be d" = & >, dp. A line search is then performed along the direction d" to find the
next point w” !t = w” +td".

Among the possible choices suggested in [|§|] for fp, we consider the following quadratic approxi-
mation in this work:

£ A 2 r r P T ryr r

Folw) = Slll? + g7 (w = w") + 5 (w = w) T Hy(w = w’) @
where H, is the Hessian of L, at w" and is computed using the data D), available at data center p.

In each iteration, the computation of the gradient ¢g" and the direction d" requires communication
across data centers. Since each data center has the global approximate view of the full objective
function, the number of iterations required are significantly less than traditional SQM methods,
resulting in orders of magnitude improvements in terms of X-DC communication.

4 System

Our system implements the algorithm above, and is built using Apache Hadoop/YARN and REEF.
YARN is being extended with a notion of federatimﬂ which provides a single-cluster image across
multiple clustersﬂ We leverage these mechanisms to support computations spanning geographically
disperse data centers. Apache REEF provides us with the basic centralized control flow and the
group communication primitives. As part of this work, we extend REEF to support federated YARN,
including scheduling of resources to particular data centers.

The algorithm described in §3] can be implemented using BROADCAST and REDUCE operators
alone, which are commonly available in communication trees. However, in order to support the
constraints for physically separated data centers, where X-DC communication links are more ex-
pensive than in-DC links, we need multi-level communication trees. We therefore extend REEF’s
group communications library to be able to form these efficient cross-data center communication
structures.

Figure [I]shows an example of the multi-level communication tree we use. The data center masters,
represented by their respective nodes M p, together with the global master M ©, form the global level
of the tree. The slave nodes within each data center and their masters M p form the local levels. A
BROADCAST originates from M G to the data center masters Mp, which in turn broadcast to the
slave nodes in their own data centers. Conversely, REDUCE operations originate on those slave
nodes, while the data center masters Mp aggregate the data prior to sending it to M for global
aggregation.

5 Evaluation

5.1 Experimental Setup

To assess our contributions we use the splice dataset for human splice site recognition [12]. It
consists of 50M examples with 47K sparse features, for a total of 200GB on disk.

2 Allows to map multiple autonomous systems into a single “federated” one.
Shttps://issues.apache.org/jira/browse/YARN-2915

https://issues.apache.org/jira/browse/YARN-2915

£100.00+ 100= x
8 F : 1
: 2
o 10.00+ 01071+
£ * =0T
= £
° =
® 1.00¢ 1072~
& i g
2 F
g 010+ ©10"° % ~ centralized
= o =2 ggr:t(glifedli—quota
. s 1Stri
8 I a?srgﬂg”tzgg r diztribﬂtgd—enhanced
< 001r distributed—enhanced 1074~ ~ distributed-quota
4 8 12 16 10" 10° 10°
Data centers X-DC transfer (MB)
Figure 2: X-DC Transfer vs. DCs Figure 3: Training Loss vs. X-DC Transfer (16 DC)

We simulate a multi-data center setup (2, 4, 8 and 16 data centers) on a large centralized clusteﬂ
Every baseline described in runs our own implementation of TRONE] [[13] for solving the [
regularized linear classification problem mentioned in §2]

5.2 Methods

We compare our solution to several variants of the baseline approach, and propose different flavors
of centralized and distributed methods. The former train models in a single data center while the
latter perform X-DC training. The scarce resource to observe is X-DC transfer cost.

Our method, called Distributed-Enhanced, uses the multi-level master/slave tree that allows X-DC
learning (Figure (1)) and runs the algorithm described in We consider the following baselines:
the state-of-the-art Centralized, where we copy all the data to one data center prior to training, and
Centralized-Quota where we do the same, but cap the amount of data that can be transferred to
match the amount consumed by our solution. Both Centralized and Centralized-Quota use a single-
level master/slave communication tree (e.g. the DC-P subtree in Figure [I) as they run in a single
data center.

We also compare our method to the Distributed and Distributed-Quota baselines. As in Distributed-
Enhanced, these baselines leave the data in place and train in a geo-distributed fashion. Dis-
tributed uses the multi-level master/slave tree for X-DC learning, and runs TRON without the
communication-efficient algorithm explained in Distributed-Quota does the same, but stops
training after it reaches the X-DC transfer budget used by Distributed-Enhanced. The comparison
between Distributed and Distributed-Enhanced better highlights the difference between the system
(multi-level master/slave tree for X-DC learning) and the algorithm (communication-efficient) wins.

6 Results and Discussion

6.1 X-DC transfer

Figure [2] illustrates the X-DC transfer (normalized with respect to the dataset size) of the different
methods for different numbers of data centers. Our method performs almost 3 orders of magnitude
better than the state-of-the-art (Centralized) in every scenario, achieving the biggest difference (~4
orders of magnitude) for 2 data centers. In this setting, Centralized transfers ~100GB (50% of the
dataset) through the X-DC link, whereas Distributed-Enhanced just needs 14MB (less than 0.01% of
the dataset) worth of transfers to train the model. Distributed also outperforms the current practice,
Centralized. The quota versions are not shown in this plot because their X-DC transfers are the same
as Distributed-Enhanced.

“Experiments on a real distributed deployment across different data centers are left to future work.
5Mahajan et al. 6] also show that TRON performs better than other popular SQM method, LBFGS, used in
the Terascale method [7].

6.2 AUC

Table [1] shows the AUC in the test set for all methods. Centralized and Distributed achieve the
same AUC, as they run the same algorithm on the same data. Distributed-Enhanced, matches
their AUC, which is remarkable considering that the X-DC transfer rate is orders of magnitude
smaller. The alternatives with the same X-DC transfer as Distributed-Enhanced, Centralized-Quota
and Distributed-Quota, perform worse. In the case of Centralized-Quota, less training data is avail-
able when the number of data centers increases, therefore, worse models are learned. In Distributed-
Quota, as the X-DC transfer quota allowed is small, the optimization runs for few iterations, pro-
ducing a model that is still far from the optimal.

Method | 2DC | 4DC | 8DC | 16DC
Ceniralized 0.6660174 | 0.6660174 | 0.6660174 | 0.6660174
Centralized-Quota | 0.6652307 | 0.6642873 | 0.6557136 | 0.6417300
Distributed 0.6660174 | 0.6660174 | 0.6660174 | 0.6660174

Distributed-Quota 0.5696233 | 0.5696233 | 0.5422752 | 0.5696233
Distributed-Enhanced | 0.6661202 | 0.6661884 | 0.6661213 | 0.6662581

Table 1: AUC on the test set of the different methods

6.3 Training Loss/Bandwidth trade-offs

Figure |3 shows the relative training losf] over time as a function of the X-DC transfer for 16 data
centers. X-DC transfers remain constant in Centralized and Centralized-Quota methods as they start
after they copy the data. Distributed-Quota loss follows the same shape as Distributed but stops
early due to the X-DC quota. Distributed-Enhanced achieves lower training losses much sooner in
terms of X-DC transfers, which means that our method can get some meaningful results faster. If
we don’t need a very accurate model (e.g. 1072 relative training loss), our approach also gives a
quicker response.

7 Conclusion and Future Work

In addition to its volume and velocity, research on planetary scale machine learning has to concern
itself with the geographic distribution of the training data. Here, we adapted and implemented a
first geo-distributed learning algorithm and evaluated it in a simulated setting. We showed that the
state-of-the-art—copy the data to a central data center for learning—is not always optimal, even
when ignoring data sovereignty issues.

By challenging the current practice, this result provides motivation to address further questions
related to geo-distributed learning, such as: 1) fault-tolerance: WAN network connection disrup-
tion can lead to temporarily unavailable data from certain DCﬂ 2) latency: exploring the trade-
off between bandwidth and time-to-insight, 3) privacy: exploring the relationship between data
sovereignty and privacy-preserving machine learning, towards constructing a system that can evolve
as laws change, and 4) scheduling: to ensure timely access to resources across data centers. To an-
swer these questions we foresee the need for substantial advances in theory, algorithms and system
design, as well as engineering of a new practice of Geo-Distributed Machine Learning (GDML).

Acknowledgments

We are grateful to our reviewers and colleagues for their help and comments on earlier versions of this paper.
This work was supported by Microsoft, and in part by the Argentine Ministry of Science, Technology and
Productive Innovation with the program BEC.AR. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect those of the sponsors.

SCalculated on the full training data as (f — f*)/f*, where f* is the minimum value obtained across
methods.

If the data is randomly distributed, recent work [14] can be leveraged, but if data loss is biased, new
techniques must be developed.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

[14]

Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu Padhye, and George Varghese.
Global analytics in the face of bandwidth and regulatory constraints. In /2th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), pages 323-336, Oakland, CA, 2015. USENIX
Association.

Qifan Pu, Ganesh Anantharayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low Latency, Geo-distributed Data Analytics. In ACM SIGCOMM, London, UK, 2015.

Ashish Vulimiri, Carlo Curino, Brighten Godfrey, Konstantinos Karanasos, and George Varghese. Wana-
lytics: Analytics for a geo-distributed data-intensive world. CIDR 2015, January 2015.

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J. Freedman. Aggregation and
degradation in jetstream: Streaming analytics in the wide area. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, NSDI’ 14, pages 275-288, Berkeley, CA,
USA, 2014. USENIX Association.

Court of Justice of the European Union Press Release No 117/15. The court of justice declares that the
commission’s us safe harbour decision is invalid, 2015. http://g8fiplkplyr33r3krz5b97dl.
wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.
pdfl Accessed 2015-10-17.

Dhruv Mahajan, Nikunj Agrawal, S. Sathiya Keerthi, S. Sundararajan, and Léon Bottou. An efficient
distributed learning algorithm based on effective local functional approximations, 2015. Arxiv http:
//arxiv.org/abs/1310.8418v4.

Alekh Agarwal, Oliveier Chapelle, Miroslav Dudik, and John Langford. A reliable effective terascale
linear learning system. Journal of Machine Learning Research, 15:1111-1133, 2014.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983-1006, nov
1998.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.,
3(1):1-122, January 2011.

Caoxie Zhang, Honglak Lee, and Kang G. Shin. Efficient distributed linear classification algorithms via
the alternating direction method of multipliers. In Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, April 21-23, 2012,
pages 1398-14006, 2012.

Martin Jaggi, Virginia Smith, Martin Takéc, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, and
Michael 1. Jordan. Communication-efficient distributed dual coordinate ascent. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,

December 8-13 2014, Montreal, Quebec, Canada, pages 30683076, 2014.

Sren Sonnenburg and Vojtech Franc. Coffin: A computational framework for linear svms. In Johannes
Frnkranz and Thorsten Joachims, editors, ICML, pages 999-1006. Omnipress, 2010.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region newton method for logistic regression.
J. Mach. Learn. Res., 9:627-650, 2008.

Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Yunseong
Lee, Tony Majestro, Dahlia Malkhi, Sergiy Matusevych, Brandon Myers, Shravan Narayanamurthy,
Raghu Ramakrishnan, Sriram Rao, Russel Sears, Beysim Sezgin, and Julia Wang. Reef: Retainable
evaluator execution framework. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1343—-1355, New York, NY, USA, 2015. ACM.

http://g8fip1kplyr33r3krz5b97d1.wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf
http://g8fip1kplyr33r3krz5b97d1.wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf
http://g8fip1kplyr33r3krz5b97d1.wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf
http://arxiv.org/abs/1310.8418v4
http://arxiv.org/abs/1310.8418v4

	Introduction
	Problem Formulation
	Algorithm
	System
	Evaluation
	Experimental Setup
	Methods

	Results and Discussion
	X-DC transfer
	AUC
	Training Loss/Bandwidth trade-offs

	Conclusion and Future Work

